C O M M U N I C A T I O N S
biological, and clinical interest, as antibacterials such as these would
be maximally effective against microbial infections without harming
the host. Moreover, 2 can be prepared easily in good yield and in
the future may provide a cost-effective route for preparation.
Continued efforts in the synthesis of new dendritic macromolecules,
characterization of their unique properties, and evaluation in
clinically important indications will lead to new solutions for a
variety of health care needs.
Acknowledgment. The authors would like to thank the NIH
and BU for partial support. We also thank Dr. Tim Gardner.
Supporting Information Available: Experimental materials and
methods for all procedures. This material is available free of charge
Figure 3. Cytotoxicity of the compounds against HUVEC. Absorbances
are calculated as a percentage of the untreated cells over a 24 h time period
(n ) 3; mean ( SD).
References
Table 1. Experimental Properties of the Dendritic Amphiphiles 1
and 2 as well as SDS and Triton X-100a
(1) (a) Tomalia, D. A; Fre´chet, J. M. J. Dendrimers and Other Dendritic
Polymers; Wiley: Chichester, U.K., 2001. (b) Newkome, G. R.; Moorefield,
C. N.; Vo¨gtle, F. Dendrimers and Dendrons. ed.; Wiley-VCH: Berlin, 2001;
p 623. (c) Newkome, G. R.; Shreiner, C. D. Polymer 2008, 49, 1–173. (d)
Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665–
1688.
(2) (a) Lee, C. C.; MacKay, J. A.; Fre´chet, J. M. J.; Szoka, F. C. Nat. Biotechnol.
2005, 23, 1517–1526. (b) Svenson, S.; Tomalia, D. A. AdV. Drug DeliVery
ReV. 2005, 57, 2106–2129. (c) Grinstaff, M. W. J. Polym. Sci., Part A:
Polym. Chem. 2008, 46, 383–400.
(3) (a) Gillies, E. R.; Fre´chet, J. M. J. Drug DiscoV. Today 2005, 10, 35–43.
(b) Lee, C. C.; Gillies, E. R.; Fox, M. E.; Guillaudeu, S. J.; Fre´chet, J. M. J.;
Dy, E. E.; Szoka, F. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16649–
16654. (c) Crampton, H. L.; Simanek, E. E. Poly. Int. 2007, 56, 489–496.
(d) Majoros, I. J.; Myc, A.; Thomas, T.; Mehta, C. B.; Baker, J. R., Jr
Biomacromolecules 2006, 7, 572–9. (e) Gurdag, S.; Khandare, J.; Stapels,
S.; Matherly, L. H.; Kannan, R. M. Bioconjugate Chem. 2006, 17, 275–
83. (f) Wolinsky, J. B.; Grinstaff, M. W. AdV. Drug DeliVery ReV. 2008,
60, 1037–1055.
(4) (a) Carnahan, M. A.; Middleton, C.; Kim, J.; Kim, T.; Grinstaff, M. W.
J. Am. Chem. Soc. 2002, 124, 5291–5293. (b) Velazquez, A. J.; Carnahan,
M. A.; Kristinsson, J.; Stinnett, S.; Grinstaff, M. W.; Kim, T. Arch.
Ophthalmol. 2004, 122, 867–870. (c) Wathier, M.; Jung, P. J.; Carnahan,
M. A.; Kim, T.; Grinstaff, M. W. J. Am. Chem. Soc. 2004, 126, 12744–
12745. (d) Wathier, M.; Johnson, S. M.; Kim, T.; Grinstaff, M. W.
Bioconjugate Chem. 2006, 17, 873–876. (e) Degoricija, L.; Johnson, C. S.;
Wathier, M.; Kim, T.; Grinstaff, M. W. InVest. Ophthalmol. Vis. Sci. 2007,
48, 2037–2042. (f) Grinstaff, M. W. Biomaterials 2007, 28, 5205–5214.
(5) So¨ntjens, S.; Nettles, D. L.; Carnahan, M. A.; Setton, L. A.; Grinstaff, M. W.
Biomacromolecules 2006, 7, 310–316.
1
2
SDS
Triton
CAC (M)
HUVEC EC50(M)
2.0 × 10-4 1.1 × 10-5 1.0 × 10-3 2.4 × 10-4
1.3 × 10-4 1.5 × 10-3 5.4 × 10-4 1.1 × 10-4
B. Subtilis EC50(M) 6.0 × 10-5 4.1 × 10-5 1.4 × 10-4 8.8 × 10-5
ratio EC50
2.2
g36
3.8
1.3
a CMCs for SDS and Triton are from ref 15.
endothelial cells (HUVECs). Low-passage number HUVECs were
equilibrated in a subconfluent monolayer and challenged with varied
concentrations of the compounds for 24 h. The resultant cell
viabilities were determined using a tetrazolium assay (Figure 3).
As seen before with the Gram-positive bacteria, glycerol, myristic
acid, and succinic acid were not cytotoxic, while both 3 and 4 were
cytotoxic. 1 also showed cytotoxicity; however, 2 did not show
any lethality in the concentration range tested. Subsequent experi-
ments at higher values up to its aqueous solubility limit of 2 ×
10-3 M produced a reduction to ∼50% of the negative untreated
control, but a complete sigmoidal shape was never obtained and
so the EC50 for 2 was estimated to be greater than ∼1.5 × 10-3
M. Importantly, 3, 4, and dendrimer 1 affected the viability of both
prokaryotes and eukaryotes at similar concentrations with the
compounds always having a ratio of eukaryotic/prokaryotic EC50
less than a factor of 3.8, which is nonideal for an antibacterial
compound (Table 1). Dendrimer 2 however exhibited a g36-fold
eukaryotic/prokaryotic EC50 ratio.
(6) Morgan, M. T.; Nakanishi, Y.; Kroll, D. J.; Griset, A. P.; Carnahan, M. A.;
Wathier, M.; Oberlies, N. H.; Manikumar, G.; Wani, M. C.; Grinstaff,
M. W. Cancer Res. 2006, 66, 11913–11921.
(7) (a) MacDougall, C.; Polk, R. E. Clin. Microbiol. ReV. 2005, 18, 638–56.
(b) Mah, T.-F.; O’Toole, G. A. Trends Microbiol. 2001, 9, 34–39.
(8) Denyer, S. P. Int. Biodeterior. Biodegrad. 1995, 36, 227–245.
(9) Heiden, T. C.; Dengler, E.; Kao, W. J.; Heideman, W.; Peterson, R. E.
Toxicol. Appl. Pharmacol. 2007, 225, 70–9.
(10) Chen, C. Z.; Beck-Tan, N. C.; Dhurjati, P.; van Dyk, T. K.; LaRossa, R. A.;
Cooper, S. L. Biomacromolecules 2000, 1, 473–480.
Upon further examination, the cytotoxicity of these compounds
appears to be correlated with the formation of supramolecular
structures in solution. Amphiphilic dendrimers are known to form
a variety of supramolecular structures based on generation number,
charge, hydrophilic/hydrophobic ratio, MW, etc., and such structures
are actively investigated.14 The critical aggregation concentrations
(CAC) for compounds 1 and 2 were measured tensiometrically to
be 2.0 × 10-4 and 1.1 × 10-5 M, respectively, values similar to
their EC50 against B. subtilis and in the case of 1, close to the EC50
against HUVEC as well. However, with 2 there is minimal lethality
against HUVECs, and there appears to be no correlation between
toxicity and CAC in this case (Table 1). We have observed that 2
can form vesicles of ∼100 nm in diameter by TEM. Further
experiments are underway to investigate the mechanism of action
and supramolecular assemblies for these antibacterial dendrimers
and the resulting eukaryotic/prokaryotic EC50 ratio.
(11) (a) Hong, S.; Bielinska, A. U.; Mecke, A.; Keszler, B.; Beals, J. L.; Shi,
X.; Balogh, L.; Orr, B. G.; Baker, J. R., Jr.; Banaszak Holl, M. M.
Bioconjugate Chem. 2004, 15, 774–782. (b) Jevprasesphant, R.; Penny, J.;
Jalal, R.; Attwood, D.; McKeown, N. B.; D’Emanuele, A. Int. J. Pharm.
2003, 252, 263–266.
(12) (a) Anderson, R. A.; Feathergill, K. A.; Diao, X-H.; Cooper, M. D.;
Kirkpatrick, R. et al. J. Androl. 2002, 23, 426–438. (b) Herold, B. C.;
Bourne, N.; Marcellino, D.; Kirkpatrick, R.; Strauss, D. M.; et al. J. Infect.
Dis. 2000, 181, 770–773.
(13) Luman, N. R.; Grinstaff, M. W. Org. Lett. 2005, 7, 4863–4866.
(14) (a) Smith, D. K.; Hirst, A. R.; Love, C. S.; Hardy, J. G.; Brignell, S. V.;
Huang, B. Prog. Polym. Sci. 2005, 30, 220–293. (b) Zeng, F.; Zimmerman,
S. C. Chem. ReV. 1997, 97, 1681–1712. (c) Newkome, G. R.; Moorefield,
C. N. Angew. Chem., Int. Ed. Engl. 1991, 30, 1178–1180. (d) Hawker,
C. J.; Wooley, K. L.; Fre´chet, J. M. J. J. Chem. Soc. Perkin Trans. I 1993,
1287–1297. (e) Percec, V.; Cho, W. D.; Ungar, G.; Yeardley, D. J. P. J. Am.
Chem. Soc. 2001, 123, 1302–1315. (f) van Hest, J. C.; Delnoye, D. A.;
Baars, M. W.; van Genderen, M. H.; Meijer, E. W. Science 1995, 268,
1592–1595. (g) Chapman, T.; Hillyer, G.; Mahan, E.; Shaffer, K. J. Am.
Chem. Soc. 1994, 116, 11195–11196. (h) van Hest, J. C. M.; Baars,
M. W. P. L.; Elissen-Roman, C.; van Genderen, M. H. P.; Meijer, E. W.
Macromolecules 1995, 28, 6689–6691. (i) Tomalia, D. A. Dendrimeric
Supramolecular and Supramacromolecular Assemblies. In Supramolecular
Polymers, 2nd ed.; Ciferri, A., Ed.; CRC Press Taylor & Francis Group:
Boca Raton, FL, 2005; pp 187-256.
In summary, we report the discovery of an anionic amphiphilic
dendrimer that possesses Gram-positive antibacterial activity and
minimal eukaryotic cell toxicity. This selectivity, as denoted by
the lack of overlap in the cytotoxicological curves, is of chemical,
(15) Helenius, A.; Simons, K. Biochim. Biophys. Acta 1975, 415, 29–79.
JA806912A
9
J. AM. CHEM. SOC. VOL. 130, NO. 44, 2008 14445