ORGANIC
LETTERS
2001
Vol. 3, No. 16
2513-2515
Stereoselective Synthesis of Styrene
Oxides via a Mitsunobu
Cyclodehydration
Steven A. Weissman,* Kai Rossen, and Paul J. Reider
Department of Process Research, Merck & Co., Inc, Rahway, New Jersey 07065
Received May 24, 2001
ABSTRACT
The Mitsunobu cyclodehydration of chiral phenethane-1,2-diols (4), readily accessed from the styrene derivative (5), has been demonstrated
to provide the corresponding styrene oxides (2) with high levels of stereoretention (up to 99%). Optimized reaction conditions are described,
from which the combination of tricyclohexylphosphine (Chx3P) and diisopropylazodicarboxylate (DIAD) in THF and R ) EWG provides the
best results.
The utility of enantiomerically enriched styrene oxide
derivatives as chiral buildings blocks for the synthesis of
natural products and biologically active compounds is well-
documented.1 Accordingly, tremendous efforts have been
aimed at developing catalytic, stereoselective epoxidation
methodologies.2 However, terminal olefins, such as styrene,
still remain a challenge for this powerful methodology. The
hydrolytic kinetic resolution of styrene oxides with (salen)-
cocatalyst3 and epoxide hydrolases4 have also been developed
for this purpose. Indirect routes to these epoxides are based
mainly on asymmetric dihydroxylation (AD) chemistry,5
which provides ready access to a range of chiral arenethane-
1,2-diols, which upon stereospecific cyclodehydration give
the chiral epoxides. Examples include dehydration via the
Sharpless acetoxonium ion,6 base-induced dehydration of the
corresponding cyclic sulfate,7 and selective hydroxyl activa-
tion followed by base-mediated ring closure.8
The Mitsunobu reaction,9 traditionally a proven regio-
selective cyclodehydration methodology, had yet to be
successfully applied to the synthesis of optically active
styrene oxides. Evans demonstrated that the triphenyl-
phosphine/diethylazodicarboxylate (DEAD) combination upon
reaction with (S)-phenethane-1,2-diol gave essentially race-
mic styrene oxide.10 It was postulated that the two regio-
isomeric oxyphosphonium betaine intermediates (A and B)
(1) For recent examples, see: (a) Hattori, K.; Nagano, M.; Kato, T.;
Nakanishi, I.; Imai, K.; Kinoshita, T.; Sakane, K. Bioorg. Med. Chem. Lett.
1995, 5, 2821. (b) Di Fabio, R.; Pietra, C.; Thomas, R. J.; Ziviani, L. Bioorg.
Med. Chem. 1995, 551. (c) Sher, P. M.; Mathur, A.; Fisher, L. G.; Wu, G.;
Skwish, S.; Michel, I. M.; Seiler, S. M.; Dickinson, K. E. J. Bioorg. Med.
Chem. 1997, 7, 1583.
(2) (a) Collman, J. P.; Wang, Z.; Straumanis, A.; Quelquejeu, M.; Rose,
E. J. Am. Chem. Soc. 1999, 121, 460. (b) Palucki, M.; Popisil, P. J.; Zhang,
W.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 9333. (c) For a review,
see: Jacobsen, E. N.; Wu, M. H. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin,
1999; Vol. II, Chapter 18.2. (d) Tian, H.; She, X.; Xu, J.; Shi, Y. Org. Lett.
2001, 3, 1929.
(3) (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science
1997, 277, 936. (b) Brandes, B. D.; Jacobsen, E. N. Tetrahedron:
Asymmetry 1997, 8, 3927.
(5) For a review, see: Kolb, H. C.; Sharpless, K. B. Transition Met.
Org. Synth. 1998, 2, 219.
(6) Kolb, H.; Sharpless, K. B. Tetrahedron 1992, 48, 10515.
(7) Jang, D. O.; Joo, Y. H.; Cho, D. H. Synth. Commun. 2000, 4489.
(8) For review, see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K.
B. Chem. ReV. 1994, 94, 2483. (b) Adiyaman, M.; Khanapure, S. P.; Hwang,
S. W.; Rokack, J. Tetrahedron Lett. 1995, 7367. (c) O’Donnell, C. J.; Burke,
S. D. J. Org. Chem. 1998, 63, 8614.
(9) For a review, see: Hughes, D. L. Org. React. 1992, 42, 335.
(10) Robinson, P. L.; Barry, C. N.; Bass, S. W.; Jarvis, S. E.; Evans, S.
A., Jr. J. Org. Chem. 1983, 48, 5396.
(4) For example, see: Pedragosa-Moreau, S.; Morriseau, C.; Zylber, J.;
Archelas, A.; Baratti, J.; Furstoss, R. J. Org. Chem. 1996, 61, 7402.
10.1021/ol016167u CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/13/2001