2798
T. Segmu¨ller et al. / Journal of Organometallic Chemistry 692 (2007) 2789–2799
least-squares calculations on F2 (SHELXL-97 [26]). In the case
of 5c the scattering contribution of unidentified and highly
disordered solvent in voids of the crystal structure was
accounted for by means of the program SQUEEZE [27]. It
was carefully checked, that this treatment did not affect the
structural parameters: details are given in the supporting
information. The thermal motion was treated anisotropi-
cally for all non-hydrogen atoms. All hydrogen atoms were
calculated and allowed to ride on their parent atoms with
fixed isotropic contributions. Further information on crystal
data, data collection and structure refinement are summa-
rized in Table 2. Important interatomic distances and angles
are shown in the corresponding figure captions.
References
[1] O.J. Scherer, P. Hornig, Angew. Chem. 79 (1967) 60.
[2] H.H. Karsch, P.A. Schlueter, in: N. Auner, J. Weis (Eds.), Organo-
silicon Chemistry IV – From Molecules to Materials, Wiley-VCH,
Weinheim, 2000, p. 287.
[3] T. Segmuller, PhD thesis, Technische Universita¨t, Munchen, 2003.
¨
¨
[4] H.H. Karsch, T. Segmuller, in: N. Auner, J. Weis (Eds.), Organo-
¨
silicon Compounds VI – From Molecules to Materials, Wiley-VCH,
Weinheim, 2005, p. 194.
[5] H.H. Karsch, T. Segmueller, in: N. Auner, J. Weis (Eds.), Organo-
silicon Chemistry V – From Molecules to Materials, Wiley-VCH,
Weinheim, 2003, p. 270.
[6] O.J. Scherer, P. Hornig, Chem. Ber. 101 (1968) 2533.
[7] H.H. Karsch, P.A. Schlueter, in: N. Auner, J. Weis (Eds.), Organo-
silicon Chemistry III – From Molecules to Materials, Wiley-VCH,
Weinheim, 1998, p. 53.
[8] H.H. Karsch, F. Bienlein, in: N. Auner, J. Weis (Eds.), Organosilicon
Chemistry II – From Molecules to Materials, Wiley-VCH, Weinheim,
1995, p. 133.
5.6. DFT calculations
All calculations were performed with the software pack-
age GAUSSIAN03 [28] using the density functional/Hartree–
Fock hybrid model Becke3LYP [29–32] and the split
valence double-f (DZ) basis set 6-31G* [33–35]. No sym-
metry or internal coordinate constraints were applied dur-
ing optimizations. All reported intermediates were verified
as true minima by the absence of negative eigenvalues in
the vibrational frequency analysis. Transition-state struc-
tures were located using the Berny algorithm [36] until
the Hessian matrix had only one imaginary eigenvalue.
The identity of all transition states was confirmed by
IRC calculations and by animating the negative eigenvec-
tor coordinate with MOLDEN [37] and GaussView [38].
Approximate free energies (DG) and enthalpies (DH)
were obtained through thermochemical analysis of fre-
quency calculations, using the thermal correction to Gibbs
free energy as reported by GAUSSIAN-03. This takes into
account zero-point effects, thermal enthalpy corrections
and entropy. All energies reported in this paper, unless
otherwise noted, are free energies or enthalpies at 298 K,
using unscaled frequencies. All transition states are max-
ima on the electronic potential energy surface (PES), which
may not correspond to maxima on the free energy surface.
[9] P.J. Wheatley, J. Chem. Soc. (1962) 1721.
[10] L. Parkanyi, G. Argay, P. Hencsei, J. Nagy, J. Organomet. Chem.
116 (1976) 299.
[11] W. Clegg, U. Klingebiel, G.M. Sheldrick, N. Vater, Z. Anorg. Allg.
Chem. 482 (1981) 88.
[12] L. Bihatsi, P. Hencsei, L. Parkanyi, J. Organomet. Chem. 219 (1981)
145.
[13] W. Clegg, U. Klingebiel, G.M. Sheldrick, Z. Naturforsch. 37B (1982)
423.
[14] A. Szollosy, L. Parkanyi, L. Bihatsi, P. Hencsei, J. Organomet.
Chem. 251 (1983) 159.
[15] W. Clegg, M. Haase, G.M. Sheldrick, N. Vater, Acta Crystallogr.,
Sect. C 40 (1984) 871.
[16] N. Auner, E. Herdtweck, E. Penzenstaudler, Acta Crystallogr., Sect.
C 49 (1993) 359.
[17] L. Parkanyi, L. Bihatsi, P. Hencsei, Z. Kristallogr. 209 (1994) 905.
[18] S.A.A. Shah, H.W. Roesky, P. Lubini, H.-G. Schmidt, Acta
Crystallogr., Sect. C 52 (1996) 2810.
[19] H.H. Karsch, P.A. Schlueter, M. Reisky, Eur. J. Inorg. Chem. (1998)
433.
[20] S.R. Foley, C. Bensimon, D.S. Richeson, J. Am. Chem. Soc. 119
(1997) 10359.
[21] S.R. Foley, Y. Zhou, G.P.A. Yap, D.S. Richeson, Inorg. Chem. 39
(2000) 924.
[22] M. Veith, Angew. Chem. 99 (1987) 1.
[23] M. Veith, M. Grosser, J. Organometal. Chem. 229 (1982) 247.
[24] G.A. Wiegers, A. Vos, Acta Crystallogr. 14 (1961) 562.
[25] G.A. Wiegers, A. Vos, Acta Crystallogr. 16 (1963) 152.
[26] G.M. Sheldrick, SHELXL-97 – Program for Crystal Structure Solution,
Acknowledgments
Institut fur Anorganische Chemie der Universita¨t, Go¨ttingen, Ger-
¨
many, 1997.
This research was financially supported by the Fonds
der Chemischen Industrie and the Lorenz foundation.
[27] A.L. Spek, Acta Crystallogr., Sect. A 46 (1990) C34.
[28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C.
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma,
G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D.
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G.
Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T.
Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-
Appendix A. Supplementary material
CCDC 636083, 626000 and 636082 contain the supple-
mentary crystallographic data for s3a, a4b and 5c. These
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: depos-
it@ccdc.cam.ac.uk. Supplementary data associated with
this article can be found, in the online version, at