Y Huang et al.: Surface Acoustic Wave Nebulization MS
1069
9. Alvarez, M., Friend, J., Yeo, L.Y.: Rapid generation of protein aerosols
and nanoparticles via surface acoustic wave atomization. Nanotechnol-
ogy 19(455103) (2008)
10. Franke, T.A., Wixforth, A.: Microfluidics for miniaturized laboratories
on a chip. Chem. Phys. Chem. 9(15), 2140–2156 (2008)
11. Friend, J.R., Yeo, L.Y., Arifin, D.R., Mechler, A.: Evaporative self-
assembly assisted synthesis of polymeric nanoparticles by surface acoustic
wave atomization. Nanotechnology 19(14), 145301-145307 (2008)
12. Lange, K., Rapp, B.E., Rapp, M.: Surface acoustic wave biosensors: a
review. Anal. Bioanal. Chem. 391(5), 1509–1519 (2008)
13. Heron, S.R., Wilson, R., Shaffer, S.A., Goodlett, D.R., Cooper, J.M.:
Surface acoustic wave nebulization of peptides as a microfluidic
interface for mass spectrometry. Anal. Chem. 82(10), 3985–3989 (2010)
14. Ho, J., Tan, M.K., Go, D.B., Yeo, L.Y., Friend, J.R., Chang, H.C.:
Paper-based microfluidic surface acoustic wave sample delivery and
ionization source for rapid and sensitive ambient mass spectrometry.
Anal. Chem. 83(9), 3260–3266 (2011)
energy distributions to ESI and the mean internal energy of
DESI was 10% higher than ESI. Additionally, DART was
compared with ESI and shown to produce slightly lower ion
survival yields (between 25% to 36% depending on
conditions) [23]. Given our results showing that SAWN,
depending on the conditions used, deposits around 4% to
23% less internal energy than ESI, we can conservatively
estimate that SAWN is “softer” than both DESI and DART.
Due to the many operational parameters of SAWN that are
just beginning to be understood, such as sample flow rate,
amplitude, and frequency of the acoustic wave, these
encouraging results require further investigation.
15. Harris, G.A., Galhena, A.S., Fernandez, F.M.: Ambient sampling/
ionization mass spectrometry: applications and current trends. Anal.
Chem. 83(12), 4508–4538 (2011)
16. Collette, C., Drahos, L., De Pauw, E., Vekey, K.: Comparison of the
internal energy distributions of ions produced by different electro-
spray sources. Rapid Commun. Mass Spectrom. 12(22), 1673–1678
(1998)
17. Collette, C., De Pauw, E.: Calibration of the internal energy distribution
of ions produced by electrospray. Rapid Commun. Mass Spectrom. 12
(4), 165–170 (1998)
18. Zins, E.L., Pepe, C., Schroder, D.: Energy-dependent dissociation of
benzylpyridinium ions in an ion-trap mass spectrometer. J. Mass
Spectrom. 45(11), 1253–1260 (2010)
19. Greisch, J.F., Gabelica, V., Remacle, F., De Pauw, E.: Thermometer
ions for matrix-enhanced laser desorption/ionization internal energy
calibration. Rapid Commun. Mass Spectrom. 17(16), 1847–1854 (2003)
20. Luo, G.H., Marginean, I., Vertes, A.: Internal energy of ions generated
by matrix-assisted laser desorption/ionization. Anal. Chem. 74(24),
6185–6190 (2002)
21. Naban-Maillet, J., Lesage, D., Bossee, A., Gimbert, Y., Sztaray, J.,
Vekey, K., Tabet, J.C.: Internal energy distribution in electrospray
ionization. J. Mass Spectrom. 40(1), 1–8 (2005)
22. Nefliu, M., Smith, J.N., Venter, A., Cooks, R.G.: Internal energy
distributions in desorption electrospray ionization (DESI). J. Am. Soc.
Mass Spectrom. 19(3), 420–427 (2008)
23. Harris, G.A., Hostetler, D.M., Hampton, C.Y., Fernandez, F.M.:
Comparison of the internal energy deposition of direct analysis in real
time and electrospray ionization time-of-flight mass spectrometry. J.
Am. Soc. Mass Spectrom 21(5), 855–863 (2010)
Acknowledgments
The authors thank the National Institutes of Health grant
1U54 AI57141-01 (D.R.G.) for funding and support. The
Department of Chemistry Computational Center has been
supported jointly by the NSF (grants CHE-0342956 and
CHE-1055132 to F.T.) and University of Washington.
C.D.M. was awarded a CEA-Eurotalent outgoing fellowship
(grant PCOFUND-GA-2008-228664) to work at the Uni-
versity of Washington during the course of these experi-
ments. Additional thanks are due to the University of
Washington, School of Pharmacy Mass Spectrometry Facil-
ity and University of Washington, School of Medicine
Proteomics Resource (UWPR95794). Part of this work was
conducted at the University of Washington NanoTech User
Facility, a member of the National Science Foundation’s
National Nanotechnology Infrastructure Network (NNIN).
The authors also thank Dr. P. R. R. Langridge-Smith of the
School of Chemistry at the University of Edinburgh for
sharing the data on SAW produced droplet size measured
with a Malvern Spraytec device.
24. Dagan, S., Hua, Y.M., Boday, D.J., Somogyi, A., Wysocki, R.J.,
Wysocki, V.H.: Internal energy deposition with silicon nanoparticle-
assisted laser desorption/ionization (SPALDI) mass spectrometry. Int. J.
Mass Spectrom. 283(1/3), 200–205 (2009)
25. Barylyuk, K.V., Chingin, K., Balabin, R.M., Zenobi, R.: Fragmentation
of benzylpyridinium "thermometer" ions and its effect on the accuracy
of internal energy calibration. J. Am. Soc. Mass Spectrom. 21(1), 172–
177 (2010)
26. Zins, E.L., Pepe, C., Rondeau, D., Rochut, S., Galland, N., Tabet, J.C.:
Theoretical and experimental study of tropylium formation from
substituted benzylpyridinium species. J. Mass Spectrom. 44(1), 12–17
(2009)
27. Zins, E.L., Rondeau, D., Karoyan, P., Fosse, C., Rochut, S., Pepe, C.:
Investigations of the fragmentation pathways of benzylpyridinium ions
under ESI/MS conditions. J. Mass Spectrom. 44(12), 1668–1675 (2009)
28. Curtiss, L.A., Raghavachari, K., Trucks, G.W., Pople, J.A.: Gaussain-2
theory for molecular energies of foirst and second-row compounds. J.
Chem. Phys. 94, 7221–7230 (1991)
29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,
Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N.,
Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V.,
Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A.,
Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa,
J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M.,
Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C.,
Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J.,
Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K.,
Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G.,
References
1. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.:
Electrospray ionization for mass-spectrometry of large biomolecules.
Science 246(4926), 64–71 (1989)
2. Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with
molecular masses exceeding 10000 Daltons. Anal. Chem. 60(20), 2299–
2301 (1988)
3. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.,
Matsuo, T.: Protein and polymer analyses up to m/z 100,000 by laser
ionization time-of-flight mass spectrometry. Rapid Commun. Mass
Spectrom. 2(8), 151–153 (1988)
4. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature
422(6928), 198–207 (2003)
5. Singh, P., Shaffer, S.A., Scherl, A., Holman, C., Pfuetzner, R.A., Freeman,
T.J.L., Miller, S.I., Hernandez, P., Appel, R.D., Goodlett, D.R.: Character-
ization of protein cross-links via mass spectrometry and an open-
modification search strategy. Anal. Chem. 80(22), 8799–8806 (2008)
6. Bolbach, G.: Matrix-assisted laser desorption/ionization analysis of
noncovalent complexes: fundamentals and applications. Curr. Pharm.
Des. 11(20), 2535–2557 (2005)
7. Loo, J.A.: Studying, noncovalent protein complexes by electrospray
ionization mass spectrometry. Mass Spectrom. Rev. 16(1), 1–23 (1997)
8. Veenstra, T.D.: Electrospray ionization mass spectrometry: a promising
new technique in the study of protein/DNA noncovalent complexes.
Biochem. Biophys. Res. Commun. 257(1), 1–5 (1999)