Chemistry Letters 2000
871
It is noteworthy that the conversion of 1a into 3a by aerobic
exposure underwent much faster than that of selenium analogue
2a into 4a due to the lower oxidation potential of tellurium
atoms of 1 than that of the selenium analogues of 2 and the con-
formational preference for transannular Te–Te interaction
which might accelerate the formation of dication B (X=Te)3e,3f
by oxidation. The calculated intramolecular Te–Te atomic dis-
tance of 1a for the most favored crown-like conformation was
estimated to be 3.606 Å from MM2, and the estimated value
was much smaller than the sum of the van der Waals radii of
tellurium atoms (4.0 Å).11
In conclusion, 1,2,4-ditellurazolidines 3 were synthesized
by oxidation of 2H,6H-tetrahydro-1,5,3,7-ditelluradiazocines 1.
Further attempts for the conversion of 3 into various tellurium-
containing heterocycles are in progress in our laboratory.
This work was partially supported by Grant-in-Aid for
Scientific Research (No. 09650946) from the Ministry of
Education, Science, Sports, and Culture.
References and Notes
1
a) G. T. Morgan and H. D. K. Drew, J. Chem. Soc., 1925, 531. b)
F. J. Berry and B. C. Smith, J. Organomet. Chem., 110, 201
(1976). c) J. Meinwald, D. Dauplaise, F. Wudl, and J. J. Hauser,
J. Am. Chem. Soc., 99, 255 (1977). d) L.-Y. Chiang and J.
Meinwald, Tetrahedron Lett., 21, 4565 (1980). e) M. V.
Lakshmikantham, M. P. Cava, M. Albeck, L. Engman, and P.
Carroll, Tetrahedron Lett., 22, 4199 (1981). f) G. Merkel, H.
Berge, and P. Jeroschewski, J. Prakt. Chem., 326, 467 (1984). g)
V. A. Potapov, N. K. Gusarova, S. V. Amosova, A. A. Tatarinova,
L. M. Sinegovskaya, and B. A. Trofimov, Zh. Org. Khim., 22, 220
(1986). h) H. B. Singh and P. K. Khanna, J. Organomet. Chem.,
338, 9 (1988). i) H. B. Singh and F. Wudl, Tetrahedron Lett., 30,
441 (1989). j) M. V. Lakshmikantham, M. P. Cava, W. H. H.
Günther, P. N. Nugara, K. A. Belmore, J. L. Atwood, and P.
Craig, J. Am. Chem. Soc., 115, 885 (1993). k) L. Stefaniak, B.
Kamienski, W. Shiff, S. V. Amosova, and G. Webb, J. Phys. Org.
Chem., 6, 520 (1993).
2
3
Y. Takikawa, T. Yoshida, Y. Koyama, and K. Shimada, Chem.
Lett., 1995, 277.
a) P. B. Roush and W. K. Musker, J. Org. Chem., 43, 4295 (1978).
b) J. T. Doi and W. K. Musker, J. Am. Chem. Soc., 100, 3533
(1978). c) W. K. Musker, T. L. Wolford, and P. B. Roush, J. Am.
Chem. Soc., 100, 6416 (1978). d) H. Fujihara and N. Furukawa,
Yuki Gosei Kagaku Kyokaishi, 49, 636 (1991), and the references
cited therein. e) H. Fujihara, T. Ninoi, R. Akaishi, T. Erata, and N.
Furukawa, Tetrahedron Lett., 32, 4537 (1991). f) H. Fujihara and
N. Furukawa, Phosphorus, Sulfur, and Silicon, 67, 131 (1992). g)
N. Furukawa, Y. Ishikawa, T. Kimura, and S. Ogawa, Chem. Lett.,
1992, 675. h) H. Fujihara, R. Saito, M. Yabe, and N. Furukawa,
Chem. Lett., 1992, 1437. i) H. Fujihara, H. Mima, T. Erata, and N.
Furukawa, J. Am. Chem. Soc., 114, 3117 (1992). j) H. Fujihara, Y.
Takaguchi, T. Ninoi, T. Erata, and N. Furukawa, J. Chem. Soc.,
Perkin Trans. 1, 1992, 2583. k) H. Fujihara and N. Furukawa,
Reviews on Heteroatom Chemistry, 6, 263 (1992).
4
5
a) D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin
Trans. 1, 1975, 1574. b) N. Petrognani and J. V. Comasseto,
Synthesis, 1991, 793.
a) C. G. Le Fevre and R. J. W. Le Fevre, J. Chem. Soc., 1932,
1142. b) M. V. Bhatt, S. Atmaram, and V. Baliah, J. Chem. Soc.,
Perkin Trans. 2, 1976, 1228. c) C. Draguet, H. D. Fiorentina, and
M. Renson, C. R. Acad. Sci. Paris, 274, 1700 (1972).
6
7
a) D. H. R. Barton, A. Fekih, and X. Lusinchi, Tetrahedron Lett.,
26, 3693 (1985). b) M. Yamashita, M. Kadokura, and R.
Suemitsu, Bull. Chem. Soc. Jpn., 57, 3359 (1987). c) D. H. R.
Barton, L. Bohè, and X. Lusinchi, Tetrahedron Lett., 29, 2571
(1988).
Selected NMR spectral data for the methylene signals of A. A
1
(X=S, R=C6H5): H NMR (CDCl3) δ = 5.10 (8H, br.s); 13C NMR
1
(CDCl3) δ = 56.5(t). A (2a, X=Se, R=C6H5): H NMR (CDCl3) δ
= 5.10 (8H, br.s); 13C NMR (CDCl3) δ = 51.3 (t). A (1a, X=Te,
R=C6H5): 1H NMR (CDCl3) δ = 5.12 (8H, br.s); 13C NMR
(CDCl3) δ = 34.0 (t).
8
9
Physical data of 1, 3, and 5 are available as the supplementary
materials.
a) J. G. Miller and E. C. Wagner, J. Am. Chem. Soc., 54, 3698
(1932). b) J. Barluenga, A. M. Bayón, and P. Campos, J. Chem.
Soc., Perkin Trans. 1, 1988, 1631.
10 X-ray crystallographic data for 3e: Deep green needle, tetragonal,
I41/a(#88), a = 18.699(5), c = 11.820(5) Å, V = 4132(2) Å3, Z = 16,
Dcalc= 2.522 g/cm3, µ(Mo Kα) = 56.10 cm–1, R = 0.027, RW = 0.027.
11 MM2 calculation of 1a was carried out by using CS Chem3D Pro
Ver. 3.5 on the Macintosh.