PAPER
Practical Synthesis of 2-(2-Isopropylaminothiazol-4-yl)-7-methoxy-1H-quinolin-4-one
2567
(7) For additional examples of thiazoles prepared from 3-
Acknowledgment
bromopyruvic acid in a similar fashion, see: (a) Kelly, T.
R.; Echavarren, A.; Chandrakumar, N. S.; Koeksal, Y.
Tetrahedron Lett. 1984, 25, 2127. (b) Bailey, N.; Dean, A.
W.; Judd, D. B.; Middlemiss, D.; Storer, R.; Watson, S. P.
Bioorg. Med. Chem. Lett. 1996, 6, 1409.
The authors wish to acknowledge Dr. Paul-James Jones for valuable
discussions while characterizing compounds by NMR.
References
(8) Brown, F. J.; Bernstein, P. R.; Cronk, L. A.; Dosset, D. L.;
Hebbel, K. C.; Maduskuie, T. P. Jr.; Shapiro, H. S.; Vacek,
E. P.; Yee, Y. K.; Willard, A. K.; Krell, R. D.; Snyder, D. W.
J. Med. Chem. 1989, 32, 807.
(1) Present Address: Johnson and Johnson Pharmaceutical
Research and Development, Turnhoutseweg 30, 2340
Beerse, Belgium.
(9) Water-soluble side-products from the reaction mixture were
not isolated, but most likely a major side-product was 4-
amino-2-hydroxyacetophenone. For leading references on
the related formation of 4-acetamido-2-hydroxyaceto-
phenone by Friedel–Crafts acylation/demethylation of 4-
acetamido-2-methoxyacetophenone and similar reactions,
see: (a) Gibson, C. S.; Levin, B. J. Chem. Soc. 1931, 2388.
(b) Chen, F. C.; Chang, C. T. J. Chem. Soc. 1958, 146.
(c) Cignarella, G.; Barlocco, D.; Curzu, M. M.; Pinna, G. A.;
Cazzulani, P.; Cassin, M.; Lumachi, B. Eur. J. Med. Chem.
1990, 25, 749.
(10) (a) Sugasawa, T.; Toyoda, T.; Adachi, M.; Sasakura, K. J.
Am. Chem. Soc. 1978, 78, 4842. (b) Douglas, A. W.;
Abramson, N. L.; Houpis, I. N.; Karady, S.; Molina, A.;
Xavier, L. C.; Yasuda, N. Tetrahedron Lett. 1994, 35, 6807.
(11) For recent mechanistic studies and industrial application of
the Sugasawa reaction, see: Prasad, K.; Lee, G. T.;
Chaudhary, A.; Girgis, M. J.; Streemke, J. W.; Repič, O.
Org. Process Res. Dev. 2003, 7, 723.
(2) Present Address: Battelle, 505 King Avenue, Columbus,
Ohio 43201, USA.
(3) (a) Lamarre, D.; Anderson, P. C.; Bailey, M.; Beaulieu, P.;
Bolger, G.; Bonneau, P.; Boes, M.; Cameron, D. R.; Cartier,
M.; Cordingley, M. G.; Faucher, A.-M.; Goudreau, N.;
Kawai, S. H.; Kukolj, G.; Lagace, L.; LaPlante, S. R.;
Narjes, H.; Poupart, M.-A.; Rancourt, J.; Sentjens, R. E.; St.
George, R.; Simoneau, B.; Steinmann, G.; Thibeault, D.;
Tsantrizos, Y. S.; Weldon, S. M.; Yong, C.-L.; Llinàs-
Brunet, M. Nature (London) 2003, 426, 186. (b) Llinàs-
Brunet, M.; Bailey, M.; Bolger, G.; Brochu, C.; Faucher, A.-
M.; Ferland, J.-M.; Garneau, M.; Ghiro, E.; Gorys, V.;
Grand-Maître, C.; Halmos, T.; Lapeyre-Paquette, N.; Liard,
F.; Poirier, M.; Rhéaume, M.; Tsantrizos, Y. S.; Lamarre, D.
J. Med. Chem. 2004, 47, 1605.
(4) Faucher, A.-M.; Bailey, M. D.; Beaulieu, P. L.; Brochu
Duceppe, J.-S..; Ferland, J.-M.; Ghiro, E.; Gorys, V.;
Halmos, T.; Kawai, S. H.; Poirier, M.; Simoneau, B.;
Tsantrizos, Y. S.; Llinàs-Brunet, M. Org. Lett. 2004, 6,
2901.
(12) Sugasawa, T.; Adachi, M.; Sasakura, K.; Kitagawa, A. J.
Org. Chem. 1979, 44, 578.
(5) For an alternative approach to 3 via a carbonylative
Sonogashira coupling–cyclization see: Haddad, N.; Tan, J.;
Farina, V. J. Org. Chem. submitted for publication.
(6) For additional examples of similar cyclizations to prepare
quinolones, see: (a) Combs, D. W.; Reed, M. S.; Klaubert,
D. H. Synth. Commun. 1992, 22, 323. (b) Li, L.; Wang, H.-
K.; Kuo, S.-C.; Wu, T.-S.; Lednicer, D.; Lin, C. M.; Hamel,
E.; Lee, K.-H. J. Med. Chem. 1994, 37, 1126. (c) Fuerstner,
A.; Hupperts, A.; Ptock, A.; Janssen, E. J. Org. Chem. 1994,
59, 5215. (d) Li, L.; Wang, H.-K.; Kuo, S.-C.; Wu, T.-S.;
Mauger, A.; Lin, C. M.; Hamel, E.; Lee, K.-H. J. Med.
Chem. 1994, 37, 3400. (e) Mahboobi, S.; Pongratz, H.
Synth. Commun. 1999, 29, 1645. (f) Traxler, P.; Green, J.;
Mett, H.; Séquin, U.; Furet, P. J. Med. Chem. 1999, 6, 1018.
(g) Takami, H.; Kishibayashi, N.; Ishii, A.; Kumazawa, T.
Bioorg. Med. Chem. 1998, 6, 2441. (h) Haesslein, J.-L.;
Baholet, I.; Fortin, M.; Iltis, A.; Khider, J.; Periers, A. M.;
Pierre, C.; Vevert, J.-P. Bioorg. Med. Chem. Lett. 2000, 10,
1487. (i) Beney, C.; Hadjeri, M.; Mariotte, A.-M.;
Boumendjel, A. Tetrahedron Lett. 2000, 41, 7037.
(j) Niedzinski, E. J.; Lashley, M. R.; Nantz, M. H.
Heterocycles 2001, 55, 623.
(13) Houpis, I. N.; Molina, A.; Douglas, A. W.; Xavier, L.;
Lynch, J.; Volante, R. P.; Reider, P. J. Tetrahedron Lett.
1994, 35, 6811.
(14) The yield was determined by a quantitative HPLC assay.
(15) 2-Isopropylamino-7-methoxy-4-methylene-4,9-dihydro-3-
thia-1,9-diazabenz[f]azulen-10-one (11): 1H NMR (400
MHz, DMSO-d6): d = 1.14 (d, J = 6.4 H, 6 H), 3.72 (s, 3 H),
3.70–3.85 (m, 1 H), 5.30 (s, 1 H), 5.34 (s, 1 H), 6.70–6.75
(m, 2 H), 6.75 (d, J = 2.4 Hz, 1 H), 7.28 (d, J = 8.5 Hz, 1 H),
7.74 (d, J = 7.5 Hz, 1 H), 10.0 (s, 1 H). 13C NMR (100 MHz,
DMSO-d6): d = 22.7, 46.3, 55.7, 106.4, 110.6, 116.8, 123.1,
130.1, 131.5, 137.0, 139.6, 160.2, 161.4, 163.9.
(16) Up to 50% of 11 was formed when the reaction was carried
out at 50 °C. Electrophilic reaction of 2-aminothiazoles at C-
5 is well precedented. In this case, it may be promoted by
ionization of the C-2 isopropylamino group, although
usually strong bases like sodium amide have been employed
to obtain deprotonation at such amino groups. See:
Heterocyclic Compounds; Weissberger, A.; Taylor, E. C.,
Eds.; Wiley: New York, 1979.
(17) A manuscript describing the complete assembly of BILN
2061 using 3 is in preparation and will be published in due
course.
Synthesis 2006, No. 15, 2563–2567 © Thieme Stuttgart · New York