J. Am. Chem. Soc. 2000, 122, 8327-8328
8327
Stereospecific Formation of 1,3-Disilacyclobutanes by
Photochemical Treatment of Bimetallic Precursors
FpCH2SiR2SiR2CH2Fp (Fp ) (η5-C5H5)Fe(CO)2)
Yongqiang Zhang, Francisco Cervantes-Lee, and
Keith H. Pannell*
Department of Chemistry, UniVersity of Texas at El Paso
El Paso, Texas 79968-0513
ReceiVed December 16, 1999
ReVised Manuscript ReceiVed March 1, 2000
The activation of the silicon-silicon bond by transition metal
complexes is an area of chemistry that has implications in catalysis
and materials science.1 Our studies on the chemistry of oligosilyl
compounds substituted with the Fp group showed that R-elimina-
tion chemistry results in the intermediacy of iron-silylene
complexes, Fp ) (η5-C5H5)Fe(CO)2). These intermediates lead
to either silylene eliminations, eq 1, or rearrangements, eq 2; both
may be effected catalytically under appropriate conditions.2,3
Figure 1. Structure of 2a.
significant differences in chemistry that may exist due to the
capacity for metal-metal (Fe-Fe) interactions.
Fp-SiMe2SiMe3 f Fp-SiMe3 + [SiMe2]
Fp-SiMe2SiMe2SiMe2SiMe3 f FpSi(SiMe3)3
(1)
(2)
We have now synthesized the bimetallic complexes FpCH2-
MeRSiSiRMeCH2Fp, R ) Me (1) and Ph (2), and report an
unprecedented photoreaction leading to the quantitative formation
of 1,3-disilacyclobutanes. Complex 18 was prepared in 64% yield
from the reaction of ClCH2Me2SiSiMe2CH2Cl9 with [Fp]-Na+,
while similar treatment of ClCH2MePhSiSiMePhCH2Cl10 afforded
2 in 24% yield, eq 5.
When the metal substituent is attached to the oligosilyl group
via a bridging methylene group, â-elimination chemistry results
in the formation of iron-silene intermediates that lead either to
rearrangements, eq 3 (R ) H, (SiMe2)nSiMe3, GeMe3), or silene
elimination, eq 4 (R ) GeMe3, Wp ) (η5-C5H5)W(CO)3).2a,4
[Fp]-Na+ + [ClCH2SiMeR]2 f
Fp-CH2SiMe2R f Fp-SiMe2CH2R
(3)
(4)
FpCH2SiMeRSiMeRCH2Fp (5)
Wp-CH2SiMe2R f Wp-R + Me2SidCH2
1H and 13C NMR spectra of 2 indicate a mixture of two isomers,
with one isomer dominant (meso/dl ) 5:1). Recrystallization of
2 from a mixture of CH2Cl2/hexane yielded prisms and the isomers
2a (meso) and 2b (dl) could be separated mechanically.11
The single-crystal structure of 2a is illustrated in Figure 1.12
The molecule consists of two identical [(η5-C5H5)Fe(CO)2CH2-
SiMePh] moieties bonded by a Si-Si bond and has Ci symmetry.
The Fe-C(8) bond length (2.092(3) Å) is in the range of the
normal Fe-C (sp3) bond distances (2.08-2.16 Å).13 The Si-Si
The silene metal intermediates involved in eq 3 (R ) H)4a have
been characterized only by low-temperature matrix-isolation
techniques.5 However, many stable transition metal silene com-
plexes have been isolated and characterized by the research groups
of Berry and Tilley.6
Scheme 1
(6) (a) Koloshi, T. S.; Carroll, P. J.; Berry, D. H. J. Am. Chem. Soc. 1990,
112, 6405. (b) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc.
1990, 112, 4079.
(7) (a) Pannell, K. H.; Sharma, H. K. Organometallics 1991, 10, 954. (b)
Ueno, K.; Hamashima, N.; Ogino, H. Organometallics 1991, 10, 959.
(8) Mp 104-6 °C. Anal. Calcd. for C20H26Fe2O4Si2: C, 48.21; H, 5.26.
Found: C, 47.76; H, 5.54. 1H NMR (C6D6) δ 0.16 (s, 4H, CH2), 0.47 (s,
12H, SiMe), 4.27 (s, 8H, Cp). 13C NMR (C6D6) δ -23.6 (CH2), 0.16 (SiMe),
85.0 (Cp), 218.3 (CO). 29Si NMR (C6D6) δ -6.03. IR (νCO, cm-1) 2009(s),
1958(s).
(9) Kobayashi, T.; Pannell, K. H. Organometallics 1991, 10, 1960.
(10) ClCH2MePhSiSiPhMeCH2Cl was similarly synthesized as a mixture
of two isomers (1:0.7) in 85% by a literature procedure.9 1H NMR (C6D6) δ
The related chemistry of bimetallic systems is less studied.
Scheme 1 illustrates the sequential formation of silylene iron
complexes by photolysis of FpSiMe2SiMe2Fp,7 indicating the
2
0.42 (s, 6H, SiMe), 2.93 (AB, J ) 13.6 Hz, 4H, CH2), 7.11-7.34 (m, 10H,
2
Ph), 0.43 (s, 6H, SiMe), 2.92 (AB, J ) 13.5 Hz, 4H, CH2), 7.11-7.34 (m,
(1) Sharma, H. K.; Pannell, K. H. Chem. ReV. 1995, 95, 1351.
(2) (a) Pannell, K. H.; Rice, J. J. Organomet. Chem. 1974, 78, C35. (b)
Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. P.
Organometallics 1986, 5, 1056. (c) Pannell, K. H.; Wang, L.-J.; Rozell, J. M.
Organometallics 1989, 8, 550. (d) Jones, K.; Pannell, K. H. J. Am. Chem.
Soc. 1993, 115, 11336. (e) Pannell, K. H.; Brun, M.-C.; Sharma, H. K.; Jones,
K.; Sharma, S. Organometallics 1994, 13, 3, 1075.
(3) (a) Tobita, H.; Ueno, K.; Ogino, H. Chem. Lett. 1986, 1777. (b) Ueno,
K.; Tobita, H.; Shimoi, M.; Ogino, H. J. Am. Chem. Soc. 1988, 110, 4092.
(4) (a) Pannell, K. H. J. Organomet. Chem. 1970, 21, 17. (b) Sharma, S.;
Kapoor, R. N.; Cervantes-Lee, F.; Pannell, K. H. Polyhedron 1991, 10, 1177.
(c) Pannell, K. H.; Kobayashi, T.; Kapoor, R. N. Organometallics 1992, 11,
1, 2229. (d) Sharma, S.; Pannell, K. H. Organometallics 1993, 12, 2, 3979.
(5) Randolf, C. L.; Wrighton, M. S. Organometallics 1987, 6, 365.
10H, Ph). 13C NMR (C6D6) δ -6.18, -5.91 (SiMe), 29.5, 29.6 (CH2), 128.5,
129.9, 134.6, 134.7 (Ph). 29Si NMR (C6D6) δ -18.6, -18.5.
(11) For 2a: Mp 146-8 °C. Anal. Calcd for C30H30Fe2O4Si2: C, 57.89;
H, 4.86. Found: C, 58.17; H, 4.39. 1H NMR (C6D6) δ 0.02 (d, 2J ) 12.6 Hz,
2H, CH2), 0.44 (d, 2J ) 12.6 Hz, 2H, CH2), 0.66 (s, 6H, SiMe), 3.97 (s, 8H,
Cp), 7.23, 7.55 (m, m, 10H, Ph). 13C NMR (C6D6) δ -26.6 (CH2), -2.42
(SiMe), 84.6 (Cp), 128.0, 128.5, 134.7, 142.4 (Ph), 217.86, 217.93 (CO).29Si
NMR (C6D6) δ -9.00. IR (νCO, cm-1) 2011(s), 1959(s). For 2b: Mp 116-8
°C. Anal. Calcd. for C30H30Fe2O4Si2: C, 57.89; H, 4.86. Found: C, 57.10; H,
3.78. 1H NMR (C6D6) δ 0.04 (d, 2J ) 12.6 Hz, 2H, CH2), 0.43 (d, 2J ) 12.6
Hz, 2H, CH2), 0.64 (s, 6H, SiMe), 4.00 (s, 8H, Cp), 7.22, 7.57 (m, m, 10H,
Ph). 13C NMR (C6D6) δ -26.8 (CH2), -2.16 (SiMe), 84.7 (Cp), 128.0, 128.5,
134.7, 142.3 (Ph), 217.9 (CO). 29Si NMR (C6D6) δ -9.07. IR (νCO, cm-1
2009(s), 1959(s).
)
10.1021/ja994392p CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/11/2000