10.1002/anie.202003218
Angewandte Chemie International Edition
COMMUNICATION
Acknowledgements
blank in CO2
a)
1a in CO2
50
0
Generous support by the DFG (Gottfried-Wilhelm-Leibniz award
to LA) is gratefully acknowledged.
Co(OAc)2 + PPh3
Co(OAc)2 + PPh3 + 1a
-50
Conflict of interest
The authors declare no conflict of interest.
-100
-150
Keywords: cobalt • carboxylation • reductive • coupling •
electrocatalysis
-3,2 -3,0 -2,8 -2,6 -2,4 -2,2 -2,0 -1,8 -1,6 -1,4 -1,2
Potential (V vs. SCE)
b)
20
10
[1]
[2]
T. A. Jacobson, J. S. Kler, M. T. Hernke, R. K. Braun, K. C. Meyer, W.
E. Funk, Nat. Sustain. 2019, 2, 691-701.
0
a) L. Zhang, Z. Hou, Chem. Sci. 2013, 4, 3395-3403; b) Y. Tsuji, T.
Fujihara, Chem. Commun. 2012, 48, 9956-9964; c) M. Cokoja, C.
Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem.
Int. Ed. 2011, 50, 8510-8537; d) L. Ackermann, Angew. Chem. Int. Ed.
2011, 50, 3842-3844; e) T. Sakakura, J.-C. Choi, H. Yasuda, Chem.
Rev. 2007, 107, 2365-2387.
a) T. K. Pal, D. De, P. K. Bharadwaj, Coord. Chem. Rev. 2020, 408,
213173; b) R. Azzouz, V. Contreras Moreno, C. Herasme-Grullon, V.
Levacher, L. Estel, A. Ledoux, S. Derrouiche, F. Marsais, L. Bischoff,
Synlett 2020, 31, 183-188; c) T. Sakakura, K. Kohno, Chem. Commun.
2009, 1312-1330; d) G. W. Coates, D. R. Moore, Angew. Chem. Int.
Ed. 2004, 43, 6618-6639.
-10
-20
-30
-40
-50
-60
-70
-80
-90
3
1a in CO2
3 + 1a
[3]
[4]
[5]
a) Y. Yang, J.-W. Lee, Chem. Sci. 2019, 10, 3905-3926; b) X. Cai, B.
Xie, Synthesis 2013, 45, 3305-3324.
-3,0 -2,8 -2,6 -2,4 -2,2 -2,0 -1,8 -1,6 -1,4 -1,2 -1,0 -0,8 -0,6
Potential (V vs SCE)
a) E. L. Lucas, E. R. Jarvo, Nat. Rev. Chem. 2017, 1, 0065; b) D. J.
Weix, Acc. Chem. Res. 2015, 48, 1767-1775; c) T. Moragas, A. Correa,
R. Martin, Chem. Eur. J. 2014, 20, 8242-8258; d) C. E. I. Knappke, S.
Grupe, D. Gärtner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin,
Chem. Eur. J. 2014, 20, 6828-6842.
a) S.-S. Yan, Q. Fu, L.-L. Liao, G.-Q. Sun, J.-H. Ye, L. Gong, Y.-Z. Bo-
Xue, D.-G. Yu, Coord. Chem. Rev. 2018, 374, 439-463; b) Q. Liu, L.
Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933; c) J. Wu, X.
Yang, Z. He, X. Mao, T. A. Hatton, T. F. Jamison, Angew. Chem. Int.
Ed. 2014, 53, 8416-8420; d) S. Li, B. Miao, W. Yuan, S. Ma, Org. Lett.
2013, 15, 977-979; e) H. Ochiai, M. Jang, K. Hirano, H. Yorimitsu, K.
Oshima, Org. Lett. 2008, 10, 2681-2683.
Figure 3. Cyclic voltammetry (DMF, 0.1 M nBu4NPF6, 100 mVs−1) with glassy
carbon as the working electrode. Cyclic voltammograms of different reaction
components and their mixtures.
[6]
[7]
[8]
a) K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev. 2011, 40, 2435-
2452; b) A. Behr, Angew. Chem. Int. Ed. 1988, 27, 661-678.
a) J. Song, Q. Liu, H. Liu, X. Jiang, Eur. J. Org. Chem. 2018, 2018,
696-713; b) T. Fujihara, Y. Tsuji, Beilstein J. Org. Chem. 2018, 14,
2435-2460.
[9]
a) A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R.
Martin, Angew. Chem. Int. Ed. 2018, 57, 15948-15982; b) M.
Börjesson, T. Moragas, D. Gallego, R. Martin, ACS Catal. 2016, 6,
6739-6749.
[10] a) K. Michigami, T. Mita, Y. Sato, J. Am. Chem. Soc. 2017, 139, 6094-
6097; b) T. Mita, Y. Higuchi, Y. Sato, Chem. Eur. J. 2015, 21, 16391-
16394.
[11] a) M. van Gemmeren, M. Börjesson, A. Tortajada, S.-Z. Sun, K. Okura,
R. Martin, Angew. Chem. Int. Ed. 2017, 56, 6558-6562; b) Y.-G. Chen,
B. Shuai, C. Ma, X.-J. Zhang, P. Fang, T.-S. Mei, Org. Lett. 2017, 19,
2969-2972.
[12] a) S.-K. Zhang, J. Struwe, L. Hu, L. Ackermann, Angew. Chem. Int. Ed.
2020, 59, 3178-3183; b) C. Zhu, M. Stangier, J. C. A. Oliveira, L.
Massignan, L. Ackermann, Chem. Eur. J. 2019, 25, 16382-16389; c)
Y. Kawamata, J. C. Vantourout, D. P. Hickey, P. Bai, L. Chen, Q. Hou,
W. Qiao, K. Barman, M. A. Edwards, A. F. Garrido-Castro, J. N.
deGruyter, H. Nakamura, K. Knouse, C. Qin, K. J. Clay, D. Bao, C. Li,
J. T. Starr, C. Garcia-Irizarry, N. Sach, H. S. White, M. Neurock, S. D.
Minteer, P. S. Baran, J. Am. Chem. Soc. 2019, 141, 6392-6402; d) T.
H. Meyer, J. C. A. Oliveira, S. C. Sau, N. W. J. Ang, L. Ackermann,
ACS Catal. 2018, 8, 9140-9147; e) N. Fu, G. S. Sauer, A. Saha, A. Loo,
S. Lin, Science 2017, 357, 575.
Scheme 3. Plausible catalytic cycle.
[13] a) J. L. Röckl, D. Pollok, R. Franke, S. R. Waldvogel, Acc. Chem. Res.
2020, 53, 45-61; b) H. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem.
Rev. 2019, 119, 6769-6787; c) N. Sauermann, T. H. Meyer, Y. Qiu, L.
Ackermann, ACS Catal. 2018, 8, 7086-7103; d) N. Sauermann, T. H.
Meyer, L. Ackermann, Chem. Eur. J. 2018, 24, 16209-16217; e) Y.
Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485-4540; f) N. Fu, G.
S. Sauer, S. Lin, Nat. Protoc. 2018, 13, 1725-1743; g) M. Yan, Y.
Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230-13319; h) E. J.
Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302-308; i) R.
Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492-2521; j) J. B.
In summary, we have developed an effective cobalt
phosphine catalyst for the cross-electrophile electro-coupling of
allylic chlorides with ambient, being devoid of harsh chemical
reductants. In-operando IR spectroscopy and cyclic voltammetry
provided detailed insights into the reaction mechanism.
This article is protected by copyright. All rights reserved.