Scheme 2 TCT mediated one-pot acetalation–acetylation.
Fig. 2 Library of orthogonally protected monosaccharide acceptors
prepared using current MCR.
In summary, TCT has proven to be a mild, inexpensive, non-
toxic, functional group tolerant, environmentally viable catalyst
for the generation of orthogonally protected monosaccharide
units. The high regioselectivity and substrate diversity add to the
advantages of the current methodology over the already existing
ones. The process is useful for industrial purposes owing to the
easy availability and low cost of TCT.
Fig. 1 Generation of TCT promoted orthogonally protected carbo-
hydrate units.
Notes and references
1 (a) A. Varki and J. B. Lowe, in Essentials of Glycobiology, ed. A. Varki,
D. R. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi,
G. W. Hart and M. E. Etzler, Cold Spring Harbor, New York, 2nd edn,
2008, pp. 75–88; For recent review articles, see; (b) G. W. Hart and
R. J. Copeland, Cell, 2010, 143, 672–676; (c) M. von Itztein and
A. P. Moran, Microbial. Glycobiol., 2009, 981–986.
2 (a) M. S. M. Timmer, S. H. L. Verhelst, G. M. Grotenbreg, M. Overhand
and H. S. Overkleeft, Pure Appl. Chem., 2005, 77, 1173–1181;
(b) E. S. H. E. Ashry and A. E. Nemr, Synthesis of Naturally Occurring
Nitrogen Heterocycles from Carbohydrates, Blackwell Publishing Ltd,
Oxford, UK, 2005 and references cited therein; (c) G.-J. Boons and
K. J. Hale, Natural product synthesis from monosaccharides, in Organic
Synthesis with Carbohydrates, Sheffield Academic Press Ltd, Sheffield,
UK, 2008, part 2.
Scheme 3 TCT mediated one-pot sequential acetalation–acetylation–
reductive opening reactions.
Table 2 Suitability of different hydride donors for reductive ring
opening
Entry
Hydride donora
Time (h)
Yieldb (%)
3 O. Oyelaran and J. C. Gildersleeve, Curr. Opin. Chem. Biol., 2009, 13,
406–413.
4 (a) S. Muthana, H. Cao and X. Chen, Curr. Opin. Chem. Biol., 2009, 13,
573–581; (b) J. R. Rich, W. W. Wakarchuk and D. R. Bundle,
Chem.–Eur. J., 2006, 12, 845–858.
1
2
3
4
NaCNBH3
Et3SiH
BH3·THF
DIBAL-H
6
8
11
10
95
45c
55c
30d
5 D. Crich and L. Lim, Org. React., 2004, 64, 115–251.
a In all cases 1 equiv. of methyl glycoside (1) was used. b Yield obtained
after column chromatography. c Degraded products were found. d Mostly
acetalated–acetylated product was isolated.
6 (a) D. Crich, Acc. Chem. Res., 2010, 43, 1144–1153; (b) C.-C. Wang,
J.-C. Lee, S.-Y. Luo, S. S. Kulkarni, Y.-W. Huang, C.-C. Lee,
K.-L. Chang and S.-C. Hung, Nature, 2007, 446, 896–899.
7 K.-L. Chang, M. M. L. Zulueta, X.-A. Lu, Y.-Q. Zhong and S.-C. Hung,
J. Org. Chem., 2010, 75, 7424–7427.
8 (a) A. Francais, D. Urban and J.-M. Beau, Angew. Chem., Int. Ed., 2007,
46, 8662; (b) Y. Bourdreux, A. Lemetais, D. Urban and J.-M. Beau,
Chem. Commun., 2011, 47, 2146–2148.
additional amounts of TCT (6 equiv.), (Scheme 3). As expected,
product 19a was obtained in good yield in the one-pot three step
operation.
Checking the compatibility of other hydride donors for the
TCT mediated one-pot reaction (Table 2), showed that
NaCNBH3 was the best hydride source among all in terms of
conversion, time and yield.
Having optimised reaction conditions for one-pot acetalation–
acetylation and alkylidene opening, a series of orthogonally pro-
tected useful monosaccharide building blocks for oligosacchar-
ide synthesis were prepared using glycosides 5–10 (Fig. 2). It is
noteworthy that in all cases the reaction proceeded smoothly
with high regioselectivity, leading to the formation of 4-OH,
6-OBn products in good to excellent yields (Fig. 2).
9 (a) Y. Vohra, M. Vasan, A. Venot and G.-J. Boons, Org. Lett., 2008, 10,
3247–3250; (b) K.-K. T. Mong, C.-S. Chao, M.-C. Chen and C.-W. Lin,
Synlett, 2009, 603–606; (c) R. A. Jones, R. Davidson, A. T. Tran,
N. Smith and M. C. Galan, Carbohydr. Res., 2010, 345, 1842–1845;
(d) H.-C. Lin, Y. B. Chen, Z. P. Lin, F. F. Wong, C.-H. Lin and S.-K. Lin,
Tetrahedron, 2010, 66, 5229–5234; (e) A.-T. Tran, R. A. Jones, J. Pastor,
J. Boisson, N. Smith and M. C. Galan, Adv. Synth. Catal., 2011, 353,
2593–2598.
10 (a) J. C. Wasilke, S. J. Obrey, R. T. Baker and G. C. Bazan, Chem. Rev.,
2005, 105, 1001–1020; (b) L. F. Tietze, Chem. Rev., 1996, 96, 115–136;
(c) S. E. Denmark and A. Thorarensen, Chem. Rev., 1996, 96, 137–165;
(d) A. Ajamian and J. L. Gleason, Angew. Chem., Int. Ed., 2004, 43,
3754–3760; (e) D. Enders, C. Grondal and M. R. Huttl, Angew. Chem.,
Int. Ed., 2007, 46, 1570–1581.
11 P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice,
Oxford University Press, New York, 1998, p. 30.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 5357–5360 | 5359