1798
K. Shohda et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1795±1798
Table 2. Melting temperature (Tm Value, ꢀC) of RNA±RNA and RNA±DNA duplexes containing an s2Um-A (match) or s2Um-G (wobble) base
pair
GCAAXAACG
d(GCAAXAACG)
CGUUU*UUGC
X=A (match Tm value
(ÁTm*)a
X=G (wobble) Tm value
(ÁTm*)b
X=A (match) Tm Value
(ÁTm)a
X=G (wobble) Tm value
(ÁTm*)b
U*=U (control)
U*=s2Um
U*=s2U
36.7
42.2 (+5.5)
43.6 (+6.9)
32.8 ( 3.9)
26.5 ( 15.7)
28.9 ( 14.7)
18.6
25.5 (+6.9)
28.0 (+9.4)
7.4 ( 11.2)
5.1 ( 20.4)
9.5 ( 18.5)
aÁTm=(Tm value of a modi®ed duplex) (that of a wild-type duplex).
bÁTm*=(Tm value of a duplex having a U*-G wobble base pair) (that of a duplex having a matched U*-A base pair in place of a U*-G base pair).
duplexes having s2U the ÁTm* values of the ones
7. (a) Lesnik, E. A.; Guinosso, C. J.; Kawasaki, A. M.; Sas-
mor, H.; Zounes, M.; Cummins, L. L.; Ecker, D. J.; Cook, P.
modi®ed by s2U derivatives were always larger than
those of the unmodi®ed, and the ÁTm* value of s2Um-
D.; Freier, S. M. Biochemistry 1993, 32, 7832. (b) Cummins, L.
L.; Owen, S. R.; Risen, L. M.; Lesnik, E. A.; Freier, S. M.;
containing duplexes was fortunately somewhat larger
McGee, D.; Guinosso, C. J.; Cook, P. D. Nucleic Acids Res.
1995, 23, 2019.
than those having s2U.
8. (a) Crooke, S. T., Lebleu, B., Eds., Antisense Research and
Applications; CRC Press: Boca Raton, 1993. (b) Crooke, S. T.,
Ed.; Antisense Research and Application; Springer-Verlag:
Berlin, 1998.
9. Sugimoto, N.; Kierzek, R.; Freier, S. M.; Turner, D. H.
Biochemistry 1986, 25, 5755.
10. Testa, S. M.; Disney, M. D.; Turner, D. H.; Kierzek, R.
Biochemistry 1999, 38, 16655.
11. (a) Sponer, J.; Leszczynski, J.; Hobza, P. J. Biomol.
Struct. Dyn. 1996, 14, 117. (b) Hobza, P.; Sponer, J. Chem.
Rev. 1999, 99, 3247.
12. The hydrogen bonding energy was estimated as the dier-
ence between the energy of complex (base pair) and energies of
isolated nucleobases. The geometries and energies of all the
systems were calculated at the HF/6-31G* level.
13. (a) Vorbruggen, H.; Strehlke, P. Chem. Ber. 1973, 106,
3039. (b) Niedballa, U.; Vorbruggen, H. J. Org. Chem., 1974,
39, 3654.
The duplex destabilization by the s2Um (or s2U)-G base
pair was a consequence of both the weaker hydrogen
bonding nature and the steric hindrance of the 2-thio-
carbonyl group, as expected by ab initio calculation.
However, the reason why the ÁTm* values of the duplexes
containing s2Um were larger than those of the duplex
containing s2U is not clear. Since the eect of the uri-
dine-2-thiolation on the stabilization and selectivity
enhancement of RNA duplexes is excellent, we propose
that several or all uracil residues of the antisense agents
should be replaced by 2-thiouracil, if such replacement
is chemically and economically possible.24 Therefore,
antisense agents having 2-thiouracil residues instead of
uracil will be one of the second-generation antisense
drugs. Further studies are under way in this direction.
14. Markiewics, W. T. J. Chem. Research (S) 1979, 24.; J.
Chem. Research (M) 1979, 0181.
Acknowledgements
15. Sekine, M. J. Org. Chem. 1989, 54, 2321.
16. (a) Kamimura, T.; Masegi, T.; Hata, T. Chem. Lett. 1982,
965. (b) Inoue, H.; Hayase, Y.; Imura, A.; Iwai, S.; Miura, K.,
Ohtsuka, E. Nucleic Acids Res. 1987, 6131
This work was supported by a Grant from ``Research
for the Future'' Program of the Japan Society for the
Promotion of Science (JSPS-RFTF97I00301) and a
Grant-in-Aid for Scienti®c Research from the Ministry
of Education, Science, Sports and Culture, Japan.
17. Spectral data of 5: 1H NMR (400 MHz, D2O) d 3.60 (3H, s,
20-O-CH3), 3.83 (1H, dd, J4 H-5 H=3.8Hz, J5 H-5 H=13.1 Hz, 50-
0
00
0
00
H), 3.96 (1H, dd, J4 H-5 H=2.5 Hz, 500-H), 4.06 (1H, dd, J1 H-
0
00
0
2 H=3.100 Hz, J2 H-3 H=5.000 Hz, 20-H), 4.12 (1H, m, 40-H), 4.30
0
0
0
(1H, dd, J3 H-4 H=6.9 Hz, 30-H), 6.15 (1H, d, J5H-6H=8.1 Hz, 5-
0
0
H), 6.76 (1H, d, 10-H), 8.08 (1H, d, 6-H).
18. (a) Beaucage, S. L.; Caruthers, M. H. Tetrahedron Lett.
1981, 22, 1859. (b) Sinha, N. D.; Biernat, J.; Koster, H. Tet-
rahedron Lett. 1983, 24, 5843.
References and Notes
1. Edmonds, C. G.; Crain, P. F.; Hashizume, T.; Gupta, R.;
Stetter, K. O.; McCloskey, J. A. J. Chem. Soc., Chem. Com-
mun. 1987, 909.
2. Sierzputowska-Gracz, H.; Sochacka, E.; Malkiewicz, A.;
Kuo, K.; Gehrke, C. W.; Agris, P. F. J. Am. Chem. Soc. 1987,
109, 7171.
3. Davies, D. B. In Progress in NMR Spectroscopy; Emsley, J.
W.; Feenly, J.; Sutclie, L. H., Eds.; Pergamon: New York,
1978; pp 135±225.
4. Sakamoto, K.; Kawai, G.; Watanabe, S.; Niimi, T.; Haya-
shi, N.; Muto, Y.; Watanabe, K.; Satoh, T.; Sekine, M.;
Yokoyama, S. Biochemisty 1996, 35, 6533.
19. Kuimelis, R. G.; Nambiar, K. P. Tetrahedron Lett. 1993,
34, 3813.
20. Kumar, R. K.; Davis, D. R. J. Org. Chem. 1995, 60, 7726.
21. (a) de Leeuw, F. A. A. M.; Altona, C. J. Chem. Soc.,
Perkin Trans. 2 1982, 375. (b) Altona, C. Recl. Trav. Chim.
Pays-Bas, 1982, 101, 413. (c) Rousse, B.; Puri, N.; Viswanad-
ham, P.; Agback, P.; Glemarec, C.; Sandstrom, A; Sund, C.;
Chattopadhyaya, J. Tetrahedron 1994, 50, 1777.
22. Smith, W.; Sierzputowska-Gracz, H.; Sochacka, E.;
Malkiewicz, A.; Agris, P. F. J. Am. Chem. Soc. 1992, 114,
7989.
23. The RNA nonamer (50-CGUUs2UmUUGC-30) was char-
acterized by MALDI-TOF-Mass spectroscopy (calcd. for
C84H105N26O65P8S (M H ): 2797.33; Found: 2797.20).
24. Lohse, J.; Dahl, O.; Nielsen, P. E. Proc. Natl. Acad. Sci.
USA 1999, 96, 11804.
5. Seanger, W. In Principles of Nucleic Acid Structure
Springer-Verlag: Berlin, 1981; Chapter 10.
6. (a) Kumar, R. K.; Davis, D. R. Nucleic Acids Res. 1997, 25,
1272. (b) Idem. Nucleosides Nucleotides 1997, 16, 1469.