7118
higher vinylogues (Scheme 2, nꢁ2) and to alkynyl analogues. In addition, we are developing a
polymer-supported version of this methodology to establish a combinatorial approach to the
synthesis of unnatural amino acids.
Scheme 4.
Acknowledgements
We thank AstraZeneca and the University of York for ®nancial assistance (P.N.C.).
References
1. For reviews and recent studies in this area, see: (a) Barrett, G. C. Chemistry and Biochemistry of the Amino Acids;
Chapman and Hall: London, 1985; (b) Williams, R. M. Synthesis of Optically Active ꢀ-Amino Acids; Pergamon:
Oxford, 1989; (c) Duthaler, R. O. Tetrahedron 1994, 50, 1539±1650; (d) Hanessian, S.; McNaughton-Smith, G.;
Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789±12854, and references cited therein; (e) Jackson,
R. F. W.; Moore, R. J.; Dexter, C. S.; Elliott, J.; Mowbray, C. E. J. Org. Chem. 1998, 63, 7875±7884; (f) Dondoni,
A.; Marra, A.; Massi, A. J. Org. Chem. 1999, 64, 933±944; (g) Reginato, G.; Mordini, A.; Valacchi, M.; Grandini,
E. J. Org. Chem. 1999, 64, 9211±9216; (h) Sibi, M. P.; Rutherford, D.; Renhowe, P. A.; Li, B. J. Am. Chem. Soc.
1999, 121, 7509±7516.
2. For our own work in this area, see Ref. 3 and: (a) Baxter, A. D.; Murray, P. J.; Taylor, R. J. K. Tetrahedron Lett.
1992, 33, 2331±2334; (b) Guo, Z.-X.; Schaeer, M. J.; Taylor, R. J. K. Chem Commun. 1993, 874±875;
(c) Campbell, A. D.; Paterson, D. E.; Raynham, T. M.; Taylor, R. J. K. Chem. Commun. 1999, 1599±1600.
3. Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. Tetrahedron Lett. 1999, 40, 5263±5266.
4. Sabat, M.; Johnson, C. R. Org. Lett. 2000, 2, 1089±1092.
5. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457±2483; (b) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa,
M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314±321; (c) Johnson, C. R.; Johns, B. A. Synlett 1997,
1406±1408.
6. (a) Denniel, V.; Bauchat, P.; Danion, D.; Danion-Bougot, R. Tetrahedron Lett. 1996, 37, 5111±5114; (b) Collet, S.;
Bauchat, P.; Danion-Bougot, R.; Danion, D. Tetrahedron: Asymmetry 1998, 9, 2121±2131.
7. (a) Chenault, H. K.; Dahmer, J.; Whitesides, G. M. J. Am. Chem. Soc. 1989, 111, 6354±6358; (b) Cox, R. J.;
Sherwin, W. A.; Lam, L. K. P.; Vederas, J. C. J. Am. Chem. Soc. 1996, 118, 7449±7460.
8. All new compounds were fully characterised by high ®eld NMR spectroscopy and by HRMS.
9. Representative procedure (Table 1, entry iii): To alkene 5 (133 mg, 0.58 mmol) in THF (2 ml) at 0ꢀC under N2 was
added 9-BBN (0.5 M in THF, 2.32 ml, 1.16 mmol) and the reaction was warmed to rt and stirred for 2 h until TLC
showed consumption of starting material (ca. 90 min). Degassed DMF (1 ml) was added followed by careful
addition (H2 evolution) of aq. K3PO4 (3 M, 0.39 ml, 1.2 mmol) followed by quick addition of iodobenzene (124
mg, 0.61 mmol) and ®nally PdCl2(dppf) (23 mg, 5 mol%) under N2. The reaction was stirred overnight and the
solvent removed in vacuo using an oil pump rotary evaporator. The residue was taken up in ether (15 ml) and
saturated NaHCO3 (15 ml). The aqueous layer was re-extracted with ether (20 ml) and the combined organic
layers were dried (MgSO4), ®ltered and concentrated in vacuo to give the crude product as a brown oil which was
puri®ed by column chromatography on silica gel (light petroleum:ethyl acetate, 4:1) to give 6c (110 mg, 62%) as a