CrystEngComm
Page 10 of 12
DOI: 10.1039/C5CE02591E
8. J. Drews, Science, 2000, 287, 1960.
all classical intermolecular hydrogen bonds in the new crystal
form. This unsuitable set of intermolecular hydrogen bonds in
Form II is compensated by adopting the global minimum energy
conformation around rotatable single bonds of the carbonyl
carbon atom. This contributes to the crystal lattice stabilization in
the polymorph described here, while classical intermolecular
hydrogen bonds contribute majorly in Form I whose molecules
deviate from minimum energy points.
9. P. Singh, A. Anand and V. Kumar, Eur. J. Med. Chem., 2014, 85, 758.
10. D. M. Mahapatra, S. K. Bharti and V. Asati, Eur. J. Med. Chem.,
2015, 98, 69.
60
5
11. J. Bernstein, Cryst. Growth Des., 2011, 11, 632.
12. J. Bernstein and A. T. Hagler, J. Am. Chem. Soc., 1978, 100, 673.
13. J. Bernstein, Polymorphism in Molecular Crystals, Oxford University
Chalcone 2 has exhibited conformerism. Its crystal structure is
Press: Oxford, 2002.
10 formed with two similar and almost completely planar molecules
and another one present with its 1ꢀphenyl ring twisted by ca. 60°.
It also differs from the two others in the conformation of the
central propenone moiety (syn or anti). In addition, our DFT
results have demonstrated that anti/planar and syn/twisted pair
15 conformations are exclusive and driven by the rotation on the
bond axis connecting carbonyl and α carbons.
Therefore, we believe to have rationalized in depth molecular
adaptations responsible for both phenomena described here,
which will be useful for further comprehension in other
20 compounds owing chalcone scaffold. The correlation between
experimental and theoretical structures seems to be a suitable
approach to probe the overall tendency of polymorphism and
conformerism in this compound class.
65 14. S. Chantrapromma, P. Ruanwas and H. –K. Fun, Acta Crystallogr.
Sect. E, 2011, 67, o2485.
15. W. A. Silva and C. K. Z. Andrade, Lett. Org. Chem., 2006, 3, 39.
16. G. R. Oliveira, H. C. Oliveira, W. A. Silva, V. H. Carvalho, J. R.
Sabino and F. T. Martins, Struct. Chem., 2012, 23, 1667.
70 17. COLLECT, Data Collection Software; Nonius: Delft, The
Netherlands, 1998.
18. Z. Otwinowski and W. Minor, In Methods in Enzymology:
Macromolecular Crystallography; C. W. Carter Jr. and R. M. Sweet
(Eds.), Academic Press: New York, 1997; Part a, Vol. 276, pp 307ꢀ
75
326.
19. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.
20. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P.
Mccabe, E. Pidcock, L. R. Monge, R. Taylor, J. van de Streek and P.
A. Wood, J. Appl. Crystallogr., 2008, 41, 466.
Acknowledgment
80 21. L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
22. F. H. Allen, Acta Crystallogr. Sect. B, 2002, 58, 380.
25 We thank the Brazilian Research Council CNPq (Conselho
Nacional de Desenvolvimento Científico e Tecnológico) for the
financial support (Processo 445802/2014ꢀ6 – CNPq Universal
14/2014; and Processo 15291 – FAPEG Universal 07/2014).
F.T.M. also thanks the CNPq for research fellowship. C.C.S also
30 thanks FAPEG (Fundação de Amparo à Pesquisa do Estado de
Goiás) for the scholarship (Processo 201410267000635).
23. I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P.
McCabe, J. Pearson and R. Taylor, Acta Crystallogr. Sect. B, 2002,
58, 389.
85 24. M. S. Gordon and M. W. Schmidt, In Theory and Applications of
Computational Chemistry: the first forty years; C. E. Dykstra, G.
Frenking, K. S. Kim and G. E. Scuseria (Eds.), Elsevier: Amsterdam,
2005, pp. 1167ꢀ1189.
Notes and references
25. R.G. Parr and W. Yang, Density-Functional Theory of Atoms and
a Instituto de Química, Universidade Federal de Goiás, Campus
Samambaia, CP 131, 74001-970, Goiânia, GO, Brazil. Fax: 55 62 3521
90
Molecules, Oxford University Press: Oxford, 1989.
26. P. J. Stephens, F. J. Devlin, C. F. Chablowski and M. J. Frisch, J.
Phys. Chem., 1994, 98, 11623.
† Electronic
Supplementary
Information
(ESI)
available:
Crystallographic Information Files (CIF) deposited with Cambridge
Crystallographic Data Centre under deposit codes 1436382 (Form II of 1)
and 1436383 (2). See DOI: 10.1039/b000000x/
27. R. H. Hertwig and W. Koch, Chem. Phys. Lett., 1997, 268, 345.
28. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
40
95 29. A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
1. T. G. Passalacqua, L. A. Dutra, L. de Almeida, A. M. A. Velasquez,
F. A. E. Torres, P. R. Yamasaki, M. B. dos Santos, L. O. Regasini,
P. A. M. Michels, V. S. Bolzani and M. A. S. Graminha, Bioorg.
Med. Chem. Lett., 2015, 25, 3342.
30. A. Szabo and N. S. Ostlund, Modern quantum chemistry: introduction
to advanced electronic structure theory, Courier Corporation, 2012.
31. F. Jensen, J. Chem. Theory Comp., 2014, 10, 1074.
45 2. W. Chen, X. Ge, F. Xu,; Y. Zhang, Z. Liu, J. Pan, J. Song, Y. Dai, J.
Zhou, J. Feng and G. Liang, Bioorg. Med. Chem. Lett., 2015, 25,
2998.
32. G. Jennings, M. D. Smith, S. ꢀM. Kuang, L. M. Hodges, J. Tyrell, R.
100
T. Williamson and P. Seaton, J. Chem. Crystallogr., 2012, 42, 159.
33. J. P. Jasinski, R. J. Butcher, K. Veena, B. Narayana and H. S.
3. M. S. Alam, S. M. M. Rahman and D. ꢀU. Lee, Chem. Pap., 2015, 69,
Yathirajan, H. S. Acta Crystallogr. Sect. E, 2009, 65, o1965.
1118.
34. K. Ohkura, S. Kashino and M. Haisa, Bull. Chem. Soc. Jpn., 1973, 46,
50 4. Z. Wang, L. Yang, X. Yang and X. Zhang, Synth. Commun., 2013, 43,
627.
3093.
105 35. S. Attar, Z. O’Brien, H. Alhaddad, M. L. Golden and A. Calderónꢀ
5. D. K. Mahapatra, V. Asati and S. K. Bharti, Eur. J. Med. Chem., 2015,
92, 839.
Urrea, Bioorg. Med. Chem., 2011, 19, 2055.
36. D. N. Dahr, The Chemistry of Chalcones and Related Compounds,
6. C. ꢀH. Tseng, C. –C. Tzeng, C. ꢀY. Hsu, C. ꢀM. Cheng, C. ꢀN. Yang
Wiley: New York, 1981.
55
and Y. ꢀL. Chen, Eur. J. Med. Chem., 2015, 96, 306.
37. N. L. Silver and D. W. Boykin, J. Org. Chem., 1970, 35, 759
7. P. Mujumdar and S. ꢀA. Poulsen, J. Nat. Prod., 2015, 78, 1470.