Page 5 of 7
ACS Catalysis
409–437. (i) Barata-Vallejo, S.; Cooke, M. V.; Postigo, A. Radical
visible light organic photocatalysts with high reducing
power but short excited state lifetime, which are useful for
reactions elusive by the conventional Ir photocatalyst.
Further development of reactions which require the higher
reducing power is currently under way in our laboratory.
Fluoroalkylation Reactions. ACS Catal. 2018, 8, 7287–7307. (j)
Song, H.-X. Han; Q.-Y.; Zhao C.-L.; Zhang, C.-P. Fluoroalkylation
Reactions in Aqueous Media: A Review. Green Chem. 2018, 20,
1662–1731.
1
2
3
4
5
6
7
8
9
(3) For selected reports on monofluoromethylation of
heteroatoms and carbon skeletons, see: (a) Zhang, W.; Zhu, L.;
Hu, J. Electrophilic monofluoromethylation of O-, S-, and N-
nucleophiles with chlorofluoromethane. Tetrahedron 2007, 63,
10569–10575. (b) Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah,
G. A. Direct Electrophilic Monofluoromethylation. Org. Lett.
2008, 10, 557–560. (c) Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder,
E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.; Sach,
N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Practical and Innate
Carbon–Hydrogen Functionalization of Heterocycles. Nature
2012, 492, 95–99. (d) Shen, X.; Zhou, M.; Ni, C.; Zhang, W.; Hu, J.
Direct Monofluoromethylation of O-, S-, N-, and P- Nucleophiles
with PhSO(NTs)CH2F: The Accelerating Effect of -Fluorine
Substitution. Chem. Sci. 2014, 5, 117–122. (e) Hu, J.; Gao, B.; Li, L.;
Ni, C.; Hu, J. Palladium-Catalyzed Monofluoromethylation of
Arylboronic Esters with Fluoromethyl Iodide. Org. Lett. 2015, 17,
3086–3089. (f) An, L.; Xiao, Y.-L.; Min, Q.-Q.; Zhang, X. Facile
Access to Fluoromethylated Arenes by Nickel-Catalyzed Cross-
Coupling between Arylboronic Acids and Fluoromethyl Bromide.
Angew. Chem. Int. Ed. 2015, 54, 9079–9083. (g) Rong, J.; Deng, L.;
Tan, P.; Ni, C.; Gu, Y.; Hu J. Radical Fluoroalkylation of
Isocyanides with Fluorinated Sulfones by Visible-Light
Photoredox Catalysis. Angew. Chem. Int. Ed. 2016, 55, 2743–2747.
(h) Fang, J.; Shen, W.-G.; Ao, G.-Z.; Liu, F. Transition-Metal-Free
Radical Fluoroalkylation of Isocyanides for the Synthesis of Tri-
/Di-/Monofluoromethylated Phenanthridines. Org. Chem. Front.
2017, 4, 2049–2053. (i) Liu, Y.; Lu, L.; Shen, Q. Monofluoromethyl-
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Experimental procedures, characterization, crystallographic
data of 1, photo- and electro-chemical experiments, control
experiments, DFT calculations and H, 13C, and 19F NMR
1
spectra (PDF)
AUTHOR INFORMATION
Corresponding Authors
*E-mail: koike.t.ad@m.titech.ac.jp.
*E-mail: makita@res.titech.ac.jp.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The authors thank the JSPS (KAKENHI Grants 22350026,
17J07953, JP16H06038, and JP18H04241 in Precisely Designed
Catalysts with Customized Scaffolding), JST CREST (Grant
Number JPMJCR18R4) and the Naito Foundation. This work
was performed under the Cooperative Research Program of
the “Network Joint Research Center for Materials and
Devices”. The authors credit Suzukakedai Materials Analysis
Division, Technical Department, Tokyo Institute of
Technology, and Prof. Masahisa Osawa, Nippon Institute of
Technology, for measurements and discussion of
photochemical phenomena.
Substituted
Sulfonium
Ylides:
Electrophilic
Monofluoromethylating Reagents with Broad Substrate Scopes.
Angew. Chem. Int. Ed. 2017, 56, 9930–9934. (j) Sheng, J. Ni, H.-Q.;
Zhang, H.-R.; Zhang, K.-F.; Wang, Y.-N.; Wang, X.-S. Nickel-
Catalyzed Reductive Cross-Coupling of Aryl Halides with
Monofluoroalkyl Halides for Late-Stage Monofluoroalkylation.
Angew. Chem. Int. Ed. 2018, 57, 7634–7639.
(4) For examples of monofluoromethylation of alkenes, see: (a)
Tang, X.-J.; Thomoson, C. S.; Dolbier Jr., W. R. Photoredox-
Catalyzed Tandem Radical Cyclization of N-Arylacrylamides:
General Methods to Construct Fluorinated 3,3-Disubstituted 2-
Oxindoles Using Fluoroalkylsulfonyl Chlorides. Org. Lett. 2014,
16, 4594–4597. (b) Tang, X.-J.; Dolbier Jr., W. R. Efficient Cu-
catalyzed Atom Transfer Radical Addition Reactions of
Fluoroalkylsulfonyl Chlorides with Electron-deficient Alkenes
Induced by Visible Light. Angew. Chem. Int. Ed. 2015, 54, 4246–
4249.
(5) (a) Yasu, Y.; Koike, T.; Akita, M. Three-component
Oxytrifluoromethylation of Alkenes: Highly Efficient and
Regioselective Difunctionalization of C=C Bonds Mediated by
Photoredox Catalysts. Angew. Chem., Int. Ed., 2012, 51, 9567–9571.
(b) Tomita, R.; Koike, T.; Akita, M. Photoredox-Catalyzed
Stereoselective Conversion of Alkynes into Tetrasubstituted
Trifluoromethylated Alkenes. Angew. Chem. Int. Ed. 2015, 54,
12923–12927. (c) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M.
Oxydifluoromethylation of Alkenes by Photoredox Catalysis:
Simple Synthesis of CF2H-Containing Alcohols. Chem. Eur. J. 2016,
22, 1262–1265. (d) Koike, T.; Akita, M. Fine Design of Photoredox
Systems for Catalytic Fluoromethylation of Carbon − Carbon
Multiple Bonds. Acc. Chem. Res. 2016, 49, 1937–1945. (e) Noto, N.;
Koike, T.; Akita, M. Metal-free Di- and Tri-fluoromethylation of
Alkenes Realized by Visible-light-Induced Perylene Photoredox
Catalysis. Chem. Sci. 2017, 8, 6375–6379.
REFERENCES
(1) (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical
Biology, Wiley-Blackwell, Chichester, UK, 2009. (b) Kirsch, P.
Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim,
Germany, 2013.
(2) For selected reviews on fluorination and fluoroalkylation,
see: (a) Ma, J.-A.; Cahard, D. Asymmetric Fluorination,
Trifluoromethylation, and Perfluoroalkylation Reactions. Chem.
Rev. 2004, 104, 6119–6146. (b) Prakash, G. K. S.; Hu, J. Selective
Fluoroalkylations with Fluorinated Sulfones, Sulfoxides, and
Sulfides. Acc. Chem. Res. 2007, 40, 921–930. (c) Furuya, T.; Kamlet,
A.
S.;
Ritter,
T.
Catalysis
for
Fluorination
and
Trifluoromethylation. Nature 2011, 473, 470–477. (d) Ni, C.; Hu,
M.; Hu, J. Good Partnership between Sulfur and Fluorine: Sulfur-
Based Fluorination and Fluoroalkylation Reagents for Organic
Synthesis. Chem. Rev. 2015, 115, 765–825. (e) Champagne, P. A.;
Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F.
Monofluorination of Organic Compounds: 10 Years of Innovation.
Chem. Rev. 2015, 115, 9073–9174. (f) Ni, C.; Hu, J. The Unique
Fluorine Effects in Organic Reactions: Recent Facts and Insights
into Fluoroalkylations. Chem. Soc. Rev. 2016, 45, 5441–5454. (g)
Rong, J.; Ni, C.; Hu, J. Metal-Catalyzed Direct
Difluoromethylation Reactions. Asian J. Org. Chem. 2017, 6, 139–
152. (h) Koike, T.; Akita, M. New Horizons of Photocatalytic
Fluoromethylative Difunctionalization of Alkenes. Chem 2018, 4,
ACS Paragon Plus Environment