A. Zakrzewska et al. / Journal of Fluorine Chemistry 111 92001) 1±10
9
for 13C and 50.688 MHz for 15N NMRexperiments for
0.1±0.2 M solutions in CDCl3 at 303 K.
Regional Computing Center of S. Staszic University of
Mining and Metallurgy in Cracow for supply of computer
time and providing programs ,Grant KBN/SGI-ORIGIN-
2000/ATRBydg/072/2000).
In the 1H NMRexperiments the spectral width was
6000 Hz, the number of scans was eight, the ¯ip angle
was 308 and the number of data points in the time domain
was 65 K which was multiplied with an exponential window
function of the digital resolution ,0.1 Hz) prior to Fourier
transform ,FT). The 1H NMRchemical shifts are referenced
to the signal of residual CHCl3, 7.26 ppm from an internal
tetramethylsilane ,TMS).
In 19F NMRexperiments, the spectral width was
18,000 Hz, the number of scans was eight, the number of
data points in the time domain was 65 K which was zero
®lled and multiplied with an exponential window function of
digital resolution ,0.3 Hz) prior to Fourier transform ,FT).
The 19F NMRchemical shifts are referenced to the central
peak of external ¯uorobenzene ,in a 1 mm diameter capil-
lary inserted coaxially inside the 5 mm NMRtube) which
was set to 0.0 ppm.
References
[1] Methods of Organic Chemistry ,Houben-Weyl), 4th Edition, Vol.
E10a, E10b/1 and E10b/2, Georg Thieme Verlag, Stuttgart, 1999/
2000.
[2] N.J. Leonard, L.E. Sutton, J. Am. Chem. Soc. 70 ,1948) 1564.
[3] A.G. Giumanini, G. Chiavari, M.M. Musiani, P. Rossi, Synthesis
,1980) 743.
[4] G.H. Kerr, O. Meth-Cohn, E.B. Mullock, H. Suschitzky, J. Chem.
Soc. ,1974) 1614.
[5] R. Williams, J. Chem. Soc. ,1939) 1199.
[6] J.R.L. Smith, J.M. Linford, L.C. McKeer, P.M. Morris, J. Chem. Soc.,
Perkin Trans. 2 ,1984) 1099.
[7] R.W. Taft, E. Price, I.R. Fox, I.C. Lewis, K.K. Anderson, G.T. Davis,
J. Am. Chem. Soc. 85 ,1963) 3146.
In proton decoupled ,Waltz-16) 13C NMRexperiments,
the spectral width was 33,000 Hz, the number of scans vary
between 100 and 1000 depending on the sample, the ¯ip
angle was 308 and the number of data points in the time
domain was 65 K which was multiplied with an exponential
window function of the digital resolution ,0.5 Hz) prior to
FT. The 13C NMRchemical shifts are referenced to the
central peak of CDCl3, 77.00 ppm from internal tetramethyl-
silane ,TMS).
In PFG ,pulsed ®eld gradient) [50], 1H, 15N HMBC
,heteronuclear multiple bond correlation) [51] experiments
the two-dimensional time domain matrix was 1024/3500 Hz
,1H Â 1024/22000 Hz ,15N) and the number of 1H scans for
each 15N increment was 64. The acquisition matrix was zero
®lled to 2 K along both axes and multiplied by exponential
window functions of digital resolutions along both axes prior
to FTs. The 15N NMRchemical shifts are referenced to the
signal of external nitromethane ,in a 1 mm diameter capil-
lary inserted coaxially inside the 5 mm NMRtube) which
was set to 0.0 ppm.
[8] T.L. Kruger, W.N. White, H. White, S.L. Hartzell, J.W. Kress, N.
Walter, J. Org. Chem. 40 ,1975) 77.
[9] M.J.S. Dewar, Y. Takeuchi, J. Am. Chem. Soc. 89 ,1967) 390.
[10] E.H. Wiseman, J. Chiaini, J.M. McManus, J. Med. Chem. 16 ,1973)
131.
[11] W.C. Davies, R.G. Cox, J. Chem. Soc. ,1937) 614.
[12] H.P. Crocker, B. Jones, J. Am. Chem. Soc. 83 ,1961) 3319.
[13] G.H. Parson, S.G. Cohen, J. Am. Chem. Soc. 96 ,1974) 2948.
[14] L.I. Rogovik, I.N. Chernyuk, V.Ye. Pridan, Zh. Org. Khim. 15 ,1979)
637.
[15] G. Schiemann, W. WinkelmuÈller, Ber. 66 ,1933) 727.
[16] M.F. Moreau-Hochu, P. Caubere, J. Chem. Soc. ,1959) 1808.
[17] B.L. Fox, R.J. Doll, J. Org. Chem. 38 ,1973) 1136.
È
[18] U. Schollkopf, U. Ludwig, Chem. Ber. 101 ,1968) 2224.
[19] R.T.C. Brownlee, D.G. Cameron, R.D. Topsom, A.R. Katritzky, A.F.
Pozharsky, J. Chem. Soc., Perkin Trans. 2 ,1974) 247.
[20] V.F. Bystrov, O.A. Yuzhakova, R.G. Kostyanovskii, Dokl. Akad.
Nauk SSSR147 ,1962) 843.
[21] R. Ikan, E. Hoffmann, E.D. Bergmann, A. Galun, Israel J. Chem. 2
,1964) 37.
[22] A.R. Bader, R.J. Bridgwater, P.R. Freeman, J. Am. Chem. Soc. 83
,1961) 3319.
[23] R. Gawinecki, E. Kolehmainen, R. Kauppinen, J. Chem. Soc., Perkin
Trans. 2 ,1998) 25.
[24] R. Gawinecki, A. Zakrzewska, in preparation.
[25] R.E. Carter, Acta Chem. Scand. 22 ,1968) 2643.
[26] S. Stavber, M. Zupan, J. Org. Chem. 50 ,1985) 3609.
[27] R.V. Hoffman, J.M. Salvador, J. Org. Chem. 57 ,1992) 4487.
[28] Patent Am. Cyanamid DE 2029961 ,1970) Chem. Abstr. 74 ,1971)
64101.
4.10. Quantum chemical calculations
Quantum chemical calculations were performed at the HF
and B3LYP levels of theory with the Gaussian 98W package
[52]. Geometry optimization was done at the ab initio HF
level with the 3-21G basis set. The GIAO-DFT [53] calcula-
tions for 13C chemical shifts were performed at the B3LYP
level with 6-311G basis set.
[29] M.F. Moreau-Hochu, P. Caubere, Tetrahedron 33 ,1977) 955.
[30] R. Pohloudek-Fabini, E. Schroepl, Pharmazie 23 ,1968) 561.
[31] M.L. Saccarello, R.W. Stradi, Synthesis ,1979) 727.
[32] F.L. Allen, R.E. Jewell, H. Suschitzky, J. Chem. Soc. ,1960) 5259.
[33] T. Tanuma, J. Irisawa, J. Fluorine Chem. 99 ,2000) 157.
[34] T. Tanuma, J. Irisawa, K. Ohnishi, J. Fluorine Chem. 102 ,2000) 205.
[35] P.B. Karadakov, K. Morokuma, Chem. Phys. Lett. 317 ,2000) 589.
[36] D.A. Fidler, J.S. Logan, M.M. Boudakian, J. Org. Chem. 26 ,1961)
4014.
Acknowledgements
[37] J.H. Wilkinson, I.L. Finar, J. Chem. Soc. ,1947) 759.
We are grateful to Mr. Reijo Kauppinen for his kind help
in NMRexperiments. B.O. gratefully acknowledges receipt
of a Fellowship from the Foundation for Polish Science
,FNP). We are very much indebted to the CYFRONET
Â
Â
Â
Â
[38] Z. Polõvka, J. Jõlek, J. Holubek, E. Svatek, A. Dlabac, M. Valchar, M.
Protiva, Coll. Czech. Chem. Commun. 49 ,1984) 86.
[39] T.B. Patrick, J.A. Schield, D.G. Kirchner, J. Org. Chem. 39 ,1974)
1758.