We are grateful to the National High Technology Research
and Development Program of China (863 Program, Grant No
2007AA03Z345) and the Program for Changjiang Scholars
and Innovative Research Team in University (IRT0711).
Notes and references
1 (a) A. Corma, P. Concepcion and P. Serna, Angew. Chem., Int. Ed.,
2007, 46, 7266–7269; (b) E. A. Gelder, S. D. Jackson and
C. M. Lok, Chem. Commun., 2005, 522–524.
2 (a) K. Shudo and T. Okamoto, Tetrahedron Lett., 1973, 21,
1839–1842; (b) K. Shudo, T. Ohta and T. Okamoto, J. Am. Chem.
Soc., 1981, 103, 645–653; (c) H. C. Ming and L. T. Chu, New J.
Chem., 2000, 24, 859; (d) T. Hiroshi, T. J. Ichi, H. Suguru,
T. Keisuke and O. Yoshinori, Eur. J. Org. Chem., 2003, 3920;
(e) P. M. Vyas, S. Roychowdhury, P. M. Woster and
C. K. Svensson, Biochem. Pharmacol., 2005, 70, 275–286;
(f) R. J. Knox, F. Friedlos, T. Marchbank and J. Roberts,
Biochem. Pharmacol., 1991, 42, 1691; (g) G. M. Anlezark,
R. G. Melton, R. F. Sherwood, W. R. Wilson, W. A. Denny,
B. D. Palmer, R. J. Knox, F. Friedlos and A. Williams, Biochem.
Pharmacol., 1995, 50, 609; (h) E. Johansson, G. N. Parkinson,
W. A. Denny and S. Neidle, J. Med. Chem., 2003, 46, 4009.
3 (a) K. J. Ratnam, R. S. Reddy, N. S. Sekhar, M. LakshmiKantam,
A. Deshpande and F. Figueras, Appl. Catal., A, 2008, 348(1),
26–29; (b) E. Bamberger, Ber. Dtsch. Chem. Ges., 1894, 27,
1347–1350.
4 (a) F. Figueras and B. Coq, J. Mol. Catal. A: Chem., 2000, 173,
223–230; (b) M. Bend, K. Hartmann and K. Reinhard, U.S. Patent
6054592, 2000; (c) T. Hiroshi, T. J. Ichi, H. Suguru, T. Keisuke and
O. Yoshinori, Eur. J. Org. Chem., 2003, 3920; (d) P. M. Vyas,
S. Roychowdhury, P. M. Woster and C. K. Svensson, Biochem.
Pharmacol., 2005, 70, 275–286.
5 (a) S. Ung, A. Falguiers, A. Guy and C. Ferroud, Tetrahedron
Lett., 2005, 46, 5913; (b) O. Kamm and C. S. Marvel, Org. Synth.,
1941, I, 445; (c) P. G. Gassman and J. E. Grandrud, J. Am. Chem.
Soc., 1984, 106, 1498; (d) F. G. Bordwell and W. Liu, J. Am. Chem.
Soc., 1996, 118, 8777; (e) T. Beissel, R. E. Powers, T. N. Parac and
K. N. Raymond, J. Am. Chem. Soc., 1999, 121, 4200; (f) Q. X. Shi,
R. W. Lu, K. Jin, Z. X. Zhang and D. F. Zhao, Chem. Lett., 2006,
35, 226.
Fig. 1 The concentration–time plots for the selective hydrogenation
of m-DNB to HA over Pt/C. Reaction conditions: 283.15 K, 0.1 MPa,
10 mmol m-dinitrobenzene, 30 ml THF, 50 mg 2wt% Pt/C. The
conversion and selectivity were determined by HPLC.
The relationships of component concentration versus
reaction time are shown in Fig. 1. The concentration of
m-DNB decreased almost linearly with reaction time, suggesting
that the reaction has dynamically pseudo-zero order
dependence with m-DNB. At the early stage of the reaction,
the selectivity to N-(3-nitrophenyl)hydroxylamine (b) was very
high only with a trace amount of byproducts, c2. As
the reaction time increase, c1 gradually appeared and
accumulated, then d and e were formed in sequence. During
the whole hydrogenation course, c2 was the main byproduct
and the total amount of c1, d and e was much lower than c2.
As the concentration of m-DNB decrease, the amount of b
increases almost linearly and its yield reaches the highest value
of 92.3% at 100% m-DNB conversion.
6 (a) F. Li, J. N. Cui, X. H. Qian and R. Zhang, Chem. Commun.,
2004, 2338–2339; (b) F. Li, J. N. Cui, X. H. Qian, R. Zhang and
Y. Xiao, Chem. Commun., 2005, 1901–1903.
7 (a) P. N. Rylander, I. M. Karpenko and G. R. Pond, US Patent
3694509, 1972; (b) G. C. Davis, US Patent 4723030, 1988.
8 D. C. Caskey and D. W. Chapman, E.P. Patent 0086363, 1983.
9 J. L. Ludec, U.S. Patent 3927101, 1975.
10 A. H. Sharma, P. Hope and U. S. Patent, 5166435, 1992.
11 (a) G. Neri, M. G. Musolino, C. Milone, A. M. Visco and A. Di
Mario, J. Mol. Catal. A: Chem., 1995, 95, 235–241; (b) G. Neri,
M. G. Musolino, E. Rotondo and S. Galvagno, J. Mol. Catal. A:
Chem., 1996, 111, 257–260; (c) G. Neri, M. G. Musolino,
L. Bonaccorsi, A. Donato, L. Mercadante and S. Galvagno, Ind.
Eng. Chem. Res., 1997, 36, 3619–3624; (d) G. Neri,
M. G. Musolino, C. Milone, D. Pietropaolo and S. Galvagno,
Appl. Catal., A, 2001, 208, 307–316.
The hydrogenation of NA is a typical consecutive reaction
with HA as the first intermediate and amine as the final
product. Pt colloid on carbon is very active and can catalyze
the hydrogenation under very mild conditions, which con-
sequently stop the consecutive hydrogenation reaction in the
middle and accumulates the intermediate HA to be the main
product. In addition, when NA has electron-withdrawing
substituent in the phenyl ring, the N–O bond in the hydroxyl-
amino group was strengthened by the electron-withdrawing
groups through the p-conjugation of the phenyl ring,18 which
effectively stabilize the HA and retard its further converting.
As a matter of fact, the formation rate of HA in the reaction
system is much higher than its disappearing. The reaction
termination for HA production can be easily observed from
the H2 up-taking rate. When NA was completely converted,
the H2 up-taking rate changed to be obviously slow.
12 O. M. Kut, F. Yucelen and G. Gut, J. Chem. Technol. Biotechnol.,
¨
1987, 39(2), 107–114.
13 H. J. Janssen, A. J. Kruithof, G. J. Steghuis and K. R. Westerterp,
Ind. Eng. Chem. Res., 1990, 29(5), 754–766; H. J. Janssen,
A. J. Kruithof, G. J. Steghuis and K. R. Westerterp, Ind. Eng.
Chem. Res., 1990, 29(9), 1822–1829.
14 T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M. A.
Ei-Sayed, Science, 1996, 272, 1924–1925.
15 R. Narayanan and M. A. Ei-sayed, Nano Lett., 2004, 4, 1343–1348.
16 D. H. Lim, L. H. Lu, D. B. Kim, D. H. Choi, D. R. Park and
H. I. Lee, J. Nanopart. Res., 2008, 10, 1215–1220.
17 J. Hou, Y. H. Ma, Y. H. Li, F. Guo and L. H. Lu, Chem. Lett.,
2008, 37, 974–975.
18 R. K. Rains, E. A. Lambers, R. A. Genetti, F. A. LP and
O. Akron, Catalysis of Organic Reactions, CRC Press, 1996,
pp. 43–52.
In summary, this communication provides an effective
method to obtain HA by the partial hydrogenation of NA
over carbon supported Pt colloid catalyst without using any
chemical promoters. Very good results were obtained with NA
bearing electron-withdrawing substituents. Since NA can be
further converted to highly valuable compounds through
several reactions like Bamberger rearrangement, this result
will generally contribute to the synthetic methodology of NA
derivatives.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1559–1561 | 1561