J . Org. Chem. 2000, 65, 7183-7186
7183
Con sequ en ces of Affin ity in Heter ogen eou s Ca ta lytic Rea ction s:
High ly Ch em oselective Hyd r ogen olysis of Iod oa r en es
Yves Ambroise,† Charles Mioskowski,† Ge´rald Dje´ga-Mariadassou,‡ and Bernard Rousseau*,†
Service des Molecules Marque´es, CEA/ Saclay, 91191 Gif sur Yvette, France, and Laboratoire de
Re´activite´ de Surface, Universite´ Pierre et Marie Curie, 4 place J ussieu, 75252 Paris, France
bernard.rousseau@cea.fr
Received August 10, 2000
The catalytic hydrodeiodination reaction using molecular hydrogen and Pd/C has been revisited.
It is shown, for the first time, that the chemoselectivity of this reaction is controlled by the high
affinity of the iodinated compound for the catalyst. This reaction is compatible with most easily
reducible functional groups (nitro, aldehyde, olefin, etc.). Using this reaction, the first general method
for tritium labeling of 3-(trifluoromethyl)-3-phenyldiazirine is described.
In tr od u ction
iodoarene was selectively reduced while the more reactive
double bond was unaffected. This surprising behavior can
be neither explained nor anticipated by the rate constants
for product formation and relies only on substrate affinity
for the palladium catalyst.
Selectivity in organic chemistry is a major asset during
the synthesis of complex molecules, and the development
of chemoselective reactions provides a powerful tool for
organic chemists. Current chemoselective reactions rely
on a simple principle: the selectivity reflects the rate
constants for product formation.1 We report that the
selectivity observed in some heterogeneous catalyst
transformations is not consistent with this principle.
We revisited the catalytic hydrogenolysis of iodoarenes
using hydrogen and Pd/C.2-5 We determined its chemose-
lectivity versus a variety of functional groups that are
known to be easily reduced (e.g., double bonds). When
an iodoaryl compound and an olefin were separately
subjected to the reducing conditions, the double bond was
transformed faster. When these two groups were reacted
together (whether borne by the same molecule or not),
the selectivity obtained was unexpected. The less reactive
This important result points to new synthetic strate-
gies. We illustrated the utility of this reaction by solving
the 3-(trifluoromethyl)-3-phenyldiazirine tritium labeling
problem.6 This template is used for photoaffinity labeling
and cross-linking experiments, which are biochemical
techniques used to investigate structural and functional
properties of biological systems. Tritium incorporation in
the 3-(trifluoromethyl)-3-phenyldiazirine template re-
quires the introduction of the radioactive element at an
early stage of the synthesis, thus increasing the number
of radioactive steps. Under our conditions, we were able
to introduce tritium in the final step of the synthesis.
Resu lts a n d Discu ssion
† CEA/Saclay.
Under the following conditionssmethanol, 10% Pd/C,
triethylamine, 10 equiv, H2, 1 atmshydrogenolysis of
iodobenzene was complete in 40 min, of bromobenzene
in 14 min, and of chlorobenzene in 6 min. Under the same
‡ Universite´ Pierre et Marie Curie.
(1) (a) Yamakawa, M.; Ito, H.; Noyori, R. J . Am. Chem. Soc. 2000,
122, 1466-1478. (b) Carren˜o, M. C.; Ruano, J . L. G.; Urbano, A.;
Remor, C. Z.; Arroyo, Y. J . Org. Chem. 2000, 65, 453-458. (c) Saito,
S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. J . Org.
Chem. 1999, 64, 3975-3978. (d) Shibata, I.; Moriuchi-Kawagami, T.;
Tanizawa, D.; Suwa, T.; Sugiyama, E.; Matsuda, H.; Baba, A. J . Org.
Chem. 1998, 63, 383-385. (e) Yasuda, M.; Hayashi, K.; Katoh, Y.;
Shibata, I.; Baba, A. J . Am. Chem. Soc. 1998, 120, 715-721. (f)
Ohkuma, T.; Ooka; H.; Ikariya, T.; Noyori, R. J . Am. Chem. Soc. 1995,
117, 10417-10418. (g)Yanagisawa, A.; Inoue, H.; Morodome, M.;
Yamamoto, H. J . Am. Chem. Soc. 1993, 115, 10356-10357.
(2) Removal of an iodine atom temporarily attached to a molecule
in order to modify its reactivity: (a) Ahluwalia, V. K.; Prakash, C.;
Gupta, R. Tetrahedron 1982, 38, 609-611. (b) Ahluwalia, V. K.; J olly,
R. S.; Tehim, A. K. Tetrahedron 1982, 38, 3673-3677. (c) Kende, A.
S.; Ebetino, F. H.; Otha, T. Tetrahedron Lett. 1985, 26, 3063-3066.
(d) Weeratunga, G.; Horne, S.; Rodrigo, R. J . Chem. Soc., Chem.
Commun. 1988, 721-722. (e) Nishiyama, S.; Suzuki, Y.; Yamamura,
S. Tetrahedron Lett. 1989, 30, 379-382. (f) Donnelly, D. M. X.; Molloy,
D. J .; Reilly, J . P.; Finet, J . P. J . Chem. Soc., Perkin Trans. 1 1995,
2531-2534. (g) Fukuyama, T.; Liu, G. J . Am. Chem. Soc. 1996, 118,
7426-7427.
(5) Tritium and deuterium labeling: (a) Chauvie`re, G.; Rousseau,
B.; Pillon, F.; Pe´rie´, J . J . Labeled Compd. Radiopharm. 1998, 41, 47-
51. (b) Darula, Z.; Peter, A.; Toth, G. J . Labeled Compd. Radiopharm.
1997, 39, 817-826. (c) Kalindjian, S. B.; Harper, E. A.; Pether, M. J .
Bioorg. Med. Chem. Lett. 1996, 6(10), 1171-1174. (d) Alcaraz, M. L.;
Peng, L.; Klotz, P.; Goeldner, M. J . Org. Chem. 1996, 61, 192-201. (e)
Seltzman, H. H.; Carroll, F. I.; Burgess, J . P.; Wyrick, D.; Burch, D. F.
J . Chem. Soc., Chem. Commun. 1995, 1549-1550. (f) Latli, B.; Casida,
J . E. J . Labeled Compd. Radiopharm. 1995, 36, 147-156. (g) Fuka-
zawa, Y.; Usui, S.; Tanimoto, K.; Hirai, Y. J . Am. Chem. Soc. 1994,
116, 8169-8175. (h) Vader, J .; Kaspersen, F.; Sperling, E.; Schlachter,
I.; Terpstra, A. J . Labeled Compd. Radiopharm. 1994, 34, 845-870.
(i) Yamamoto, M.; Dolle, V.; Warnock, W.; Diyizou, Y.; Yamada, M.;
Nakatani, Y.; Ourisson, G. Bull. Soc. Chim. Fr. 1994, 131, 317-329.
(6) (a) Hori, N.; Iwai, S.; Inoue, H.; Ohtsuka, E. J . Biol. Chem. 1992,
267, 15591-15594. (b) Brunner, J . Annu. Rev. Biochem. 1993, 62, 483-
514. (c) Delfino, J . M.; Schreiber, S. L.; Richards, F. M. J . Am. Chem.
Soc. 1993, 115, 3458-3474. (d) Kotzyba-Hibert, F.; Kapfer, I.; Goeldner,
M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1296-1312. (e) Hesterkamp,
T.; Hauser, S.; Luetcke, H.; Bukau, B. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 4437-4441. (f) Grassi, D.; Lippuner, V.; Aebi, M.; Brunner,
J .; Vasella, A. J . Am. Chem. Soc. 1997, 119, 10992-10999. (g)
Hatanaka, Y.; Hashimoto, M.; Kanaoka, Y. J Am. Chem. Soc. 1998,
120, 453-454. (h) Weber, T.; Brunner, J . J . Am. Chem. Soc. 1995, 117,
3084-3095.
(3) Preparation of monoiodinated compounds from their dihaloge-
nated analogues: (a) Numazawa, M.; Kimura, K.; Ogata, M.; Nagaoka,
M. J . Org. Chem. 1985, 50, 5421-5423. (b) Horne, S.; Weeratunga,
G.; Rodrigo, R. J . Chem. Soc., Chem. Commun. 1990, 39-41.
(4) Synthesis of new molecules of biological interest: (a) Li, T.; Zeng,
Z.; Estevez, V. A.; Baldenius, K. U.; Nicolaou, K. C. J oyce, G. F. J .
Am. Chem. Soc. 1994, 116, 3709-3715. (b) Ishiwata, H.; Sone, H.;
Kigoshi, H.; Yamada, K. Tetrahedron 1994, 50, 12853-12882.
10.1021/jo0012243 CCC: $19.00 © 2000 American Chemical Society
Published on Web 10/13/2000