868
R. W. Bates, C. J. Lim
LETTER
monoclinic; space group: P2 (1)/n; unit cell dimensions:
References and Notes
a = 11.1651 (4) Å, a = 90°, b = 11.2768 (4) Å, b = 115.343
(2)°, c = 11.1785 (5) Å, g = 90°; volume: 1272.00(9) Å3; Z:
4; density(calcd): 1.124 Mg/m3; absorption coefficient:
0.081 mm–1; F(000): 472; crystal size: 0.30 × 0.30 × 0.14
mm3; q range for data collection: 2.16–27.67°; index ranges:
–14 £ h £ 14, –12 £ k £ 14, –14 £ l £ 14; reflections
collected: 12787; independent reflections: 2983
(1) (a) Arata, Y.; Ohahshi, T. Yakagaku Zasshi 1957, 77, 792.
(b) Maurer, B.; Ohloff, G. Helv. Chim. Acta 1976, 59, 1169.
(2) (a) Lalonde, R. T.; Muhammad, N.; Wong, C. F.; Sturiale,
E. R. J. Org. Chem. 1980, 45, 3664. (b) Ohnuma, T.; Tabe,
M.; Shiiya, K.; Ban, Y. Tetrahedron Lett. 1983, 24, 4249.
(c) Tufariello, J. J.; Dyszlewski, A. D. J. Chem. Soc., Chem.
Commun. 1987, 1138. (d) Shimizu, I.; Yamazaki, H. Chem.
Lett. 1990, 777. (e) Clive, D. J. L.; Bergstra, R. J. J. Org.
Chem. 1991, 56, 4976. (f) Aoyagi, S.; Shishido, Y.;
Kibayashi, C. Tetrahedron Lett. 1991, 32, 4325. (g) Honda,
T.; Ishikawa, F.; Yamane, S. J. Chem. Soc., Chem. Commun.
1994, 499. (h) Honda, T.; Ishikawa, F.; Yamane, S.
Heterocycles 1999, 52, 313. (i) Barluenga, J.; Aznar, F.;
Ribas, C.; Valdés, C. J. Org. Chem. 1999, 64, 3736.
(j) Gebauer, J.; Blechert, S. Synlett 2005, 2826. (k) Davis,
F.; Santhanaraman, M. J. Org. Chem. 2006, 71, 4222.
(l) Stoye, A.; Quandt, G.; Brunnhöfer, B.; Kapatsina, E.;
Baron, J.; Fischer, A.; Weymann, M.; Kunz, H. Angew.
Chem. Int. Ed. 2009, 48, 2228.
(3) (a) Bates, R. W.; Satchareon, V. Chem. Soc. Rev. 2002, 12 .
For a review of silver in heterocycle synthesis, see:
(b) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-
García, I. Chem. Rev. 2008, 108, 3174.
(4) Bates, R. W.; Nemeth, J.; Snell, R. H. Synthesis 2008, 1033.
(5) Bates, R. W.; Lu, Y. J. Org. Chem. 2009, 74, 9460.
(6) (a) Crandall, J. K.; Tindell, G. L. J. Chem. Soc., Chem.
Commun. 1970, 1412. (b) Konegawa, T.; Ohtsuka, Y.;
Ikeda, H.; Sugai, T.; Ohta, H. Synlett 1997, 1297. (c) Ma,
S.; Gao, W. J. Org. Chem. 2002, 67, 6104.
[R(int) = 0.0586]; completeness to q = 27.67°: 99.9%;
absorption correction; semi-empirical from equivalents;
max. and min. transmission: 0.9888 and 0.9762; refinement
method: full-matrix least-squares on F2; data/restraints/
parameters: 2983/0/144; goodness-of-fit on F2; 1.067; final
R indices [I > 2s(I)]R1 = 0.0652, wR2 = 0.1952; R indices
(all data); R1 = 0.1041, wR2 = 0.2283; largest diff. peak and
hole; 0.425 and –0.298 e Å–3. Details have been deposited
with the Cambridge Crystallographic Data Centre, CCDC
(12) Diethyl methylphosphonate (8.71 g, 57.3 mmole) in THF
(30 mL) and added via cannula to a solution of n-BuLi (48
mL of a 1.6 M solution in hexane, 71.6 mmol) in THF (50
mL) at –78 °C. A solution of the Weinreb amide of 3-furoic
acid (6.64 g, 47.7 mmol) in THF (20 mL) and added via
cannula to the mixture. The mixture was stirred for 2 h. 2 M
HCl was added to the mixture, and it was extracted twice
with Et2O. The combined organic layers were dried
(MgSO4), and concentrated to give phosphonate 8 as a
brown oil (15 g, 1.29 mmol, 72%), which was used without
purification. 1H NMR (300 MHz, CDCl3): d = 1.30 (t,
J = 7.05 Hz, 6 H, CH3), 3.39 (d, J = 22.7 Hz, 2 H, PCH2),
4.14 (m, 4 H, CH2), 6.80 (t, J = 1.2 Hz, 1 H, CH), 7.43 (s, 1
H, CH), 8.16 (s, 1 H, CH). 13C NMR (100 MHz, CDCl3):
d = 16.2 (d, J = 5.7 Hz), 40.6 (d, J = 127.8 Hz), 62.7, 108.8,
127.7, 144.2, 149.1, 185.6 (d, J = 6.7 Hz).
(7) (a) Grochowski, E.; Jurczak, J. Synthesis 1976, 682.
(b) Iwagami, H.; Yatagai, M.; Nakazawa, M.; Orita, H.;
Honda, Y.; Ohnuki, T.; Yukawa, T. Bull. Chem. Soc. Jpn.
1991, 64, 175.
(13) Sinisterra, J. V.; Mouloungui, Z.; Delmas, M.; Gaset, A.
Synthesis 1985, 1097.
(14) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.;
Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett.
1984, 25, 2183.
(8) NMR spectroscopic data for the trans isomer: 1H NMR (300
MHz, CDCl3): d = 1.08 (3 H, d, J = 6.8 Hz, CH3), 1.45 (9 H,
s, t-Bu), 2.39 (1 H, m, CH), 3.41 (1 H, t, J = 8.3 Hz, CH2),
3.93 (1 H, t, J = 6.9 Hz, CH), 4.10 (1 H, t, J = 7.2 Hz,CH2),
5.13 (1 H, J = 10.1 Hz, =CH), 5.22 (1 H, J = 17.0 Hz, =CH),
5.76 (1 H, ddd, J = 7.2, 10.2, 16.8 Hz, =CH). 13C NMR (75
MHz, CDCl3): d = 14.5, 28.2, 43.8, 69.1, 75.0, 81.8, 115.8,
136.7, 157.0.
(15) Connon, S. J.; Blechert, S. Angew. Chem. Int. Ed. 2003, 42,
1900.
(16) Bieniek, M.; Michrowska, A.; Usanov, D. L.; Grela, K.
Chem. Eur. J. 2008, 14, 806.
(17) Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.;
(9) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem. Eur. J. 2004,
10, 484.
Zhao, H. J. Am. Chem. Soc. 2004, 126, 10210.
(18) NMR data for piperidine 12: 1H NMR (400 MHz, CDCl3):
d = 0.89 (d, J = 6.4 Hz, 3 H), 1.10–1.30 (m, 3 H), 1.35–1.50
(1 H, m), 1.55–1.70 (1 H, m), 1.75–1.85 (2 H, m), 1.95–2.05
(1 H, m), 2.25–2.32 (1 H, m), 2.40–2.45 (2 H, m), 3.57 (m,
1 H), 3.65 (s, 3 H), 6.37 (s, 1 H), 7.33 (m, 2 H). 13C NMR
(100 MHz, CDCl3): d = 18.4, 28.6, 30.2, 33.9, 34.1, 35.5,
51.5, 53.2, 62.3, 109.1, 129.5, 138.3, 142.7, 174.5.
(19) Lactam 13 is also obtained if ester 12 is treated directly with
methylmagnesium bromide.
(10) (a) Cicchi, S.; Got, A.; Brandi, A.; Guarna, A.; Sarlos, F. D.
Tetrahedron Lett. 1990, 31, 3351. (b) Zhang, D.; Süling, C.;
Miller, M. J. J. Org. Chem. 1998, 63, 885. (c) Mulvihill, M.
J.; Gage, J. L.; Miller, M. J. J. Org. Chem. 1998, 63, 3357.
(d) Li, F.; Brogan, J. B.; Gage, J. L.; Zhang, D.; Miller, M. J.
J. Org. Chem. 2004, 69, 4538. (e) Yang, Y.-K.; Choi, J.-H.;
Tae, J. J. Org. Chem. 2005, 70, 6995. (f) Calvet, G.;
Blanchard, N.; Kouklovsky, C. Synthesis 2005, 3346.
(11) A suitable crystal was obtained from EtOAc–hexane.
Empirical formula: C11H21NO3; formula weight: 215.29;
temp: 173 (2) K; wavelength: 0.71073 Å; crystal system:
Synlett 2010, No. 6, 866–868 © Thieme Stuttgart · New York