I. Manners et al.
High molecular weight [(p-CF3C6H4)PH·BH2]n (5): In a typical experi-
ment, neat (p-CF3C6H4)PH2·BH3 (2) (0.155 g, 0.81 mmol) and [{Rh(m-Cl)-
(1,5-cod)}2] (ca. 0.010 g, 2.5 mol% Rh) were stirred for 9 h at 608C, gas
evolution was observed and the contents of the flask slowly solidified.
After cooling to room temperature, the resulting dark yellow solid was
dissolved in THF (1 mL), filtered to remove residual catalyst and precipi-
tated into pentane (ca. 150 mL). The light brown fibrous product 5 was
dried under vacuum at 258C for 18–24 h and isolated (0.109 g,
0.567 mmol, 70%). GPC analysis (3 mm solution of [Bu4N]Br in THF,
polystyrene standards): Mw =56170, PDI=1.67; 1HNMR (300 MHz,
CDCl3): d = 7.9–6.5 (br, Ar-H), 4.42 (brd, 1JPH =354 Hz, PH), 2.2–0.8
[14] H. Dorn, R. A. Singh, J. A. Massey, A. J. Lough, I. Manners, Angew.
Chem. 1999, 111, 3540; Angew. Chem. Int. Ed. 1999, 38, 3321.
[15] H. Dorn, R. A. Singh, J. A. Massey, J. M. Nelson, C. A. Jaska, A. J.
Lough, I. Manners, J. Am. Chem. Soc. 2000, 122, 6669.
[16] H. Dorn, J. M. Rodezno, B. Brunnhçfer, E. Rivard, J. A. Massey, I.
Manners, Macromolecules 2003, 36, 291.
[17] For recent theoretical work on polyphosphinoboranes see: a) D. Jac-
quemin, C. Lambert, E. A. Perpꢂte, Macromolecules 2004, 37, 1009;
b) D. Jacquemin, V. Wathelet, E. A. Perpꢂte, Macromolecules 2004,
37, 5040.
[18] a) C. A. Jaska, K. Temple, A. J. Lough, I. Manners, J. Am. Chem.
Soc. 2003, 125, 9424; b) C. A. Jaska, I. Manners, J. Am. Chem. Soc.
2004, 126, 1334; c) C. A. Jaska, I. Manners, J. Am. Chem. Soc. 2004,
126, 9776.
[19] H. Dorn, E. Vejzovic, A. J. Lough, I. Manners, Inorg. Chem. 2001,
40, 4327.
(br, BH2); 11B{1H} NMR (160 MHz, CDCl3): d
=
À34.3 (br, BH2);
31P{1H} NMR (121 MHz, CDCl3): d = À46.9 (t); 19F NMR (282 MHz,
CDCl3): d = À62.5 (s, CF3).
No reaction was detected by 31P NMR when neat 2 was heated at 608C
for 9 h. However, approximately 20% conversion to polyphosphinobor-
ane 5 was observed when neat 2 was heated at 758C for 9 h.
[20] J. Scheirs, Modern Fluoropolymers: High Performance Polymers for
Diverse Applications, Wiley, New York, 1997.
[21] K. Bourumeau, A.-C. Gaumont, J.-M. Denis, J. Organomet. Chem.
1997, 529, 205.
[22] J. C. Huffman, W. A. Skupinski, K. G. Caulton, Cryst. Struct.
Commun. 1982, 11, 1435.
[23] W. T. Klooster, T. F. Koetzle, P. E. M. Siegbahn, T. B. Richardson,
R. H. Crabtree, J. Am. Chem. Soc. 1999, 121, 6337.
[24] P. S. Bryan, R. L. Kuczkowski, Inorg. Chem. 1972, 11, 553.
[25] We have previously observed this phenomenon in the 29Si NMR
spectrum of a polyferrocenylsilane [Fe(h-C5H4)2SiRR’]n where R =
Me and R’ = Cl see: D. L. Zechel, K. C. Hultzsch, R. Rulkens, D.
Balaishis, Y. Ni, J. K. Pudelski, A. J. Lough, I. Manners, D. A.
Foucher, Organometallics 1996, 15, 1972. For a general overview of
dyad resolution using NMR spectroscopy see: F. Heatley in NMR
Spectroscopy of Polymers (Ed.: R. N. Ibbett), Blackie, London,
1993, pp. 1–49.
Acknowledgements
T.J.C. is grateful for a University of Toronto Open Fellowship, S.B.C.
thanks NSERC for a PDF and I.M. thanks the Canadian government for
a Canada Research Chair. We thank David Rider and Kun Liu for help
with AFM, Chantal Paquet for ellipsometry measurements, Alex Bar-
tole-Scott for GPC measurements and Dr. Hendrik Dorn and Dr. Eric
Rivard for helpful discussions.
[1] F. Gauvin, J. F. Harrod, H.-G. Woo, Adv. Organomet. Chem. 1998,
42, 363.
[26] H. Nçth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy
of Boron Compounds, Springer, Berlin, 1978.
[2] J. A. Reichl, D. H. Berry, Adv. Organomet. Chem. 1998, 43, 197.
[3] C. A. Jaska, A. Bartole-Scott, I. Manners, Dalton Trans. 2003, 4015.
[4] C. T. Aitken, J. F. Harrod, E. Samuel, J. Am. Chem. Soc. 1986, 108,
4059.
[5] T. Imori, V. Lu, H. Cai, T. D. Tilley, J. Am. Chem. Soc. 1995, 117, 9931.
[6] a) A. J. Hoskin, D. W. Stephan, Angew. Chem. 2001, 113, 1917;
Angew. Chem. Int. Ed. 2001, 40, 1865; b) V. P. W. Bçhm, M. Broo-
khart, Angew. Chem. 2001, 113, 4832; Angew. Chem. Int. Ed. 2001,
40, 4694.
[27] Previous reports have mentioned similar problems with the GPC
analysis of polyphosphazenes that were circumvented by the addi-
tion of a small amount (ca. 0.1 wt%) of [Bu4N]Br to the THF
mobile phase, see: T. H. Mourey, S. M. Miller, W. T. Ferrar, T. R.
Molaire, Macromolecules 1989, 22, 4286.
[28] Y. Xia, G. M. Whitesides, Angew. Chem. 1998, 110, 568; Angew.
Chem. Int. Ed. Engl. 1998, 37, 550.
[29] M. Geissler, Y. Xia, Adv. Mater. 2004, 16, 1249.
[30] G. R. Brewer, Electron-Beam Technology in Microelectronic Fabri-
cation, Academic Press, New York, 1980.
[7] Q. Jiang, P. J. Carroll, D. H. Berry, Organometallics 1993, 12, 177.
[8] J. M. Fischer, W. E. Piers, S. D. P. Batchilder, M. J. Zaworotko, J.
Am. Chem. Soc. 1996, 118, 283.
[31] J. Fujita, H. Watanabe, Y. Ochiai, S. Manako, J. S. Tsai, S. Matsui,
Appl. Phys. Lett. 1995, 66, 3064.
[9] R. Shu, L. Hao, J. F. Harrod, H.-G. Woo, E. Samuel, J. Am. Chem.
Soc. 1998, 120, 12988.
[32] S. B. Clendenning, S. Aouba, M. S. Rayat, D. Grozea, J. B. Sorge,
P. M. Brodersen, R. N. S. Sodhi, Z.-H. Lu, C. M. Yip, M. R. Free-
man, H. E. Ruda, I. Manners, Adv. Mater. 2004, 16, 215.
[33] S. W. J. Kuan, C. W. Franck, Y. H. Y. Lee, T. Eimori, D. R. Allee,
R. F. W. Pease, R. Browning, J. Vac. Sci. Technol. B 1989, 7, 1745.
[34] B. Bçmer, H. Hagemann, Angew. Makromol. Chem. 1982, 109, 285.
[35] U. P. Schçnholzer, N. Stutzmann, T. A. Tervoort, P. Smith, L. J.
Gauckler, J. Am. Ceram. Soc. 2002, 85, 1885.
[36] S.-J. Kim, D. E. McKean, J. Mater. Sci. Lett. 1998, 17, 141.
[37] G. Giordano, R. H. Crabtree, Inorg. Synth. 1979, 19, 218.
[38] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J.
Timmers, Organometallics 1996, 15, 1518.
[39] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
[40] G. M. Sheldrick, SHELXTL-PC V5.1, Bruker Analytical X-Ray Sys-
tems Inc., Madison, WI, 1997.
[41] R. B. King, N. D. Sadanani, Synth. React. Inorg. Met.-Org. Chem.
1985, 15, 149.
[10] J. He, H. Q. Liu, J. F. Harrod, R. Hynes, Organometallics 1994, 13, 336.
[11] a) Y. Li, Y. Kawakami, Macromolecules 1999, 32, 6871; b) R. Zhang,
J. E. Mark, A. R. Pinhas, Macromolecules 2000, 33, 3508; c) T. E.
Ready, B. P. S. Chauhan, P. Boudjouk, Macromol. Rapid Commun.
2001, 22, 654.
[12] Recently, the ambient temperature dehydrocoupling of P-Hand Al/
À
Ga Hbonds to form Lewis acid/base stabilized phosphine-alanes
and gallanes has been reported, see: U. Vogel, A. Y. Timoshkin, M.
Scheer, Angew. Chem. 2001, 113, 4541; Angew. Chem. Int. Ed. 2001,
40, 4409.
[13] For recent work from other groups on the formation of new inor-
ganic polymers based on phosphorus or boron see a) N. Matsumi, K.
Naka, Y. Chujo, J. Am. Chem. Soc. 1998, 120, 5112; b) V. A. Wright,
D. P. Gates, Angew. Chem. 2002, 114, 2495; Angew. Chem. Int. Ed.
2002, 41, 2389; c) C.-W. Tsang, M. Yam, D. P. Gates, J. Am. Chem.
Soc. 2003, 125, 1480; d) R. C. Smith, J. D. Protasiewicz, J. Am.
Chem. Soc. 2004, 126, 2268; e) T. J. Peckham, J. A. Massey, C. H.
Honeyman, I. Manners, Macromolecules 1999, 32, 2830; f) M. Gro-
sche, E. Herdtweck, F. Peters, M. Wagner, Organometallics 1999, 18,
4669; g) Y. Qin, C. Pagba, P. Piotrowiak, F. Jꢁkle, J. Am. Chem. Soc.
2004, 126, 7015; h) T. Baumgartner, T. Neumann, B. Wirges, Angew.
Chem. 2004, 116, 6323; Angew. Chem. Int. Ed. 2004, 43, 6197.
[42] R. B. King, P. M. Sundaram, J. Org. Chem. 1984, 49, 1784.
Received: December 16, 2004
Published online: May 18, 2005
4534
ꢀ 2005 Wiley-VCHVerlag GmbH& Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 4526 – 4534