filtered through Celite. The yellow filtrate was concentrated
in vacuo until incipient crystallization, and cooled to Ϫ20 ЊC,
resulting in the formation of air-stable (as solid) yellow–orange
crystals (0.09 g, 70% yield, mp 95–97 ЊC, decomp.). Refluxing
the mixture for several hours did not result in any new com-
pound. Anal. Calc. for C21H27RuCl: C, 60.64; H, 6.54. Found:
C, 60.66; H, 6.67%. 1H NMR (chloroform-d, ambient): δ 7.66–
7.40 (m, 5H, Ph), 4.60 (dd, 1H, H-2, J = 7.7, 9.5 Hz), 2.97 (dd,
1H, H-1, J = 7.7, 2.3 Hz), 2.11 (q, 1H, H-4, J = 6.8 Hz), 1.80 (d,
CH3, J = 6.8 Hz), 1.60 (dd, 1H, H-1, J = 9.5, 2.3 Hz), 1.42 (s,
15H, C5Me5). 13C NMR (chloroform-d, ambient): δ 137.6 (s,
Ph), 130.7 (d, Ph, J = 158 Hz), 129.1 (d, Ph, J = 158 Hz), 126.8
(d, Ph, J = 158 Hz), 110.1 (s, C-3), 94.9 (s, C5Me5), 83.1 (dd,
C-2, J = 162, 5 Hz), 69.6 (d, C-4, J = 158 Hz), 50.9 (t, C-1,
J = 156 Hz), 15.7 (q, Me, J = 127 Hz), 9.1 (q, C5Me5, J = 128
Hz). IR (Nujol mull): 1732s, 1599w, 1504w, 1261s, 1120w,
1074ms, 1024ms, 893w, 800m, 781m, 705s cmϪ1. Mass spec-
trum (EI, 17 eV) [m/z (relative intensity)]: 544 (49), 543 (47), 542
(35), 467 (14), 145 (15), 144 (89), 143 (19), 129 (100), 128 (23%).
putationally stable results. In the above cases, the Ru
atoms were located from Patterson syntheses. For all structures,
non-hydrogen atoms were anisotropically refined and hydrogen
atoms were treated as idealized contributions. SHELXTL32
(ver. 4.2 and 5.1) software was used in the solution and refine-
ment of 2 and 3.
CCDC reference number 186/2092.
Acknowledgements
Partial support of this research by the NSF and University of
Utah is gratefully acknowledged. We would like to thank a
reviewer for helpful comments.
References
1 R. D. Ernst, Chem. Rev., 1988, 88, 1235.
2 W. A. Donaldson, P. T. Bell and M.-J. Jin, J. Organomet. Chem.,
1992, 441, 449; J. R. Bleeke, R. J. Wittenbrink, T. W. Clayton, Jr. and
M. Y. Chiang, J. Am. Chem. Soc., 1990, 112, 6539; C. Quirosa-
Guillou and J.-P. Lellouche, J. Org. Chem., 1994, 59, 4693; B. C.
Roell, Jr. and K. F. McDaniel, J. Am. Chem. Soc., 1990, 112, 9004;
D. Seyferth and E. W. Goldman, J. Organomet. Chem., 1981, 208,
189; T.-W. Lee and R.-S. Liu, Organometallics, 1988, 7, 878;
H. Yasuda and A. Nakamura, J. Organomet. Chem., 1985, 285, 15;
M. S. Kralik, J. P. Hutchinson and R. D. Ernst, J. Am. Chem. Soc.,
1985, 107, 8296; M. S. Kralik, J. P. Hutchinson and R. D. Ernst,
Organometallics, 1987, 6, 2612.
3 J. T. Spencer and R. D. Ernst, US Pat 5 352 488, 1994; S. J. Severson,
T. H. Cymbaluk, R. D. Ernst, J. M. Higashi and R. W. Parry, Inorg.
Chem., 1983, 22, 3833; T. D. Newbound, J. W. Freeman, D. R.
Wilson, M. S. Kralik, A. T. Patton, C. F. Campana and R. D. Ernst,
Organometallics, 1986, 6, 2432; B. Hessen, T. Siegrist, T. Palstra,
S. M. Tanzler and M. L. Steigerwald, Inorg. Chem., 1993, 32, 5165;
B. Hessen, S. M. Stuczynski and M. L. Steigerwald, Presented at the
205th National ACS Meeting, Denver, Colorado, March 28, 1993;
P. D. Smith and M. P. McDaniel, J. Polym. Sci., Part A, 1989, 27,
2695; G. M. Dawkins, Eur. Pat. Appl. 0416785A2 and 0416786A2;
T. Kohara and S. Ueki, US Pat. 4871704, 1989 and 4926002, 1990;
M. B. Zielinski, US Pat. 5075426, 1991; P. D. Smith and E. Hsieh,
US Pat. 4587227, 1986; E. A. Benham, P. D. Smith, E. T. Hsieh and
M. P. McDaniel, J. Macromol. Sci., Part A, 1988, 25, 259.
4 (a) W. Trakarnpruk, A. M. Arif and R. D. Ernst, Organometallics,
1992, 11, 1686; (b) W. Trakarnpruk, A. L. Rheingold, B. S. Haggerty
and R. D. Ernst, Organometallics, 1994, 13, 3914; (c) H. W. Bosch,
H.-U. Hund, D. Nietlispach and A. Salzer, Organometallics, 1992,
11, 2087; (d) V. Kulsomphob, K. A. Ernst, A. L. Rheingold and
R. D. Ernst, Inorg. Chim. Acta, 1999, 296, 170.
5 W. Trakarnpruk, A. M. Arif and R. D. Ernst, J. Organomet. Chem.,
1995, 485, 25; R. W. Gedridge, A. M. Arif and R. D. Ernst,
J. Organomet. Chem., 1995, 501, 95; J. W. Freeman, N. C. Hallinan,
A. M. Arif, R. W. Gedridge, R. D. Ernst and F. Basolo, J. Am.
Chem. Soc., 1991, 113, 6509; A. M. Arif, R. D. Ernst, E. Meléndez,
A. L. Rheingold and T. E. Waldman, Organometallics, 1995, 14,
1761; M. S. Kralik, L. Stahl, A. M. Arif, C. E. Strouse and R. D.
Ernst, Organometallics, 1992, 11, 3617; W. A. Donaldson, P. T. Bell
and M.-T. Jin, J. Organomet. Chem., 1992, 441, 449.
6 P. J. Fagan, M. D. Ward and J. C. Calabrese, J. Am. Chem. Soc.,
1989, 111, 1698.
7 K. Jonas, Angew. Chem., Int. Ed. Engl., 1985, 24, 295; A. Ceccon,
A. Gambaro and A. Venzo, J. Chem. Soc., Chem. Commun., 1985,
540.
(Pentamethylcyclopentadienyl)(2-methyl-4-phenylpentadienyl)-
ruthenium(II), Ru(C5Me5)(2-Me-4-PhC5H5) 4
To a THF solution (40 mL) containing [Ru(C5Me5)Cl]4 (2.50 g,
2.3 mmol) was added an excess of potassium carbonate and a
mixture of 2-methyl-4-phenylpenta-1,3-diene and 2-methyl-4-
phenylpenta-2,4-diene (1.45 g, 9.2 mmol) in 10 mL of THF. The
original dark brown solution turned a clearer yellow–brown
after stirring overnight. The volatiles were removed in vacuo
and the residue was extracted with 3 × 20 mL pentane and
filtered through alumina. The yellow filtrate was concentrated
to a volume of ca. 5 mL and cooled to Ϫ90 ЊC, yielding yellow
air-stable (as solid) crystals (1.70 g, mp 81–82 ЊC, 47% yield).
Higher quality crystals for X-ray analysis were obtained by
slowly cooling a saturated pentane solution to Ϫ30 ЊC. Anal.
Calc. for C22H28Ru: C, 67.15; H, 7.17. Found: C, 66.97; H,
7.26%. 1H NMR (benzene-d6, ambient): δ 7.1–7.5 (m, 5H, Ph),
5.62 (s, 1H, H-3), 2.72 (d, 1H, Hexo-1, J = 2.6 Hz), 2.28 (d, 1H,
Hexo-5, J = 2.3 Hz), 1.83 (s, 3H, Me), 1.52 (s, 15H, C5Me5), 0.74
(d, 1H, Hendo-5, J = 2.3 Hz), 0.19 (d, 1H, Hn-1, J = 2.6 Hz). 13
C
NMR (benzene-d6, ambient): δ 144.5 (s, Ph), 128.7 (d, Ph),
128.6 (d, Ph), 127.1 (d, Ph), 92.7 (s, C-2), 92.5 (d, C-3, J = 159
Hz), 92.1 (s, C-4), 90.7 (s, C5Me5), 46.7 (t, C-5, J = 153 Hz), 40.4
(t, C-1, J = 156 Hz), 26.5 (q, Me, 126 Hz), 10.8 (q, C5Me5,
J = 125 Hz). Mass spectrum (EI, 80 eV) [m/z (relative inten-
sity)]: 396 (40), 395 (40), 394 (100), 393 (89), 392 (96), 391 (83),
390 (45), 389 (32), 388 (21), 387 (10), 381 (22), 380 (12), 379
(56), 378 (30), 377 (50), 376 (32), 375 (20), 374 (14), 373 (11),
233 (11), 232 (11), 231 (13), 230 (11%).
X-Ray structural determinations
Single crystals of the symmetrically substituted compounds
were obtained by slowly cooling their concentrated solutions in
hexane [Ru(C5Me5)(1,5-Ph2C5H5) 1, Ru(C5Me5)(3-PhC5H6) 3]
or diethyl ether [Ru(C5Me5)(2,4-Ph2C5H5) 2] to Ϫ20 ЊC. Crys-
tallographic data are collected in Table 2. The crystals were
mounted in glass capillaries. For 1, systematic absences were
consistent with either the Cc or C2/c space group, but a solution
could only be achieved for the former. Data were processed
using bioteX29 and teXsan30 program packages, while the
structure was solved by direct methods (SIR92).31
8 P. Powell, M. Stephens, A. Muller and M. G. B. Drew,
J. Organomet. Chem., 1986, 310, 255; P. Powell, J. Chem. Res. (S),
1978, 283; P. Powell, J. Organomet. Chem., 1981, 206, 239; P. Powell,
J. Organomet. Chem., 1983, 244, 393.
9 W. A. Donaldson and M. Ramaswamy, Tetrahedron Lett., 1989, 30,
1339.
For 2 the crystals were found to possess 6/mmm Laue sym-
10 R. A. Fischer and W. A. Herrmann, J. Organomet. Chem., 1989, 377,
metry. Systematic absences in the data were compatible with
275.
¯
three space groups: P63cm (185), P6c2 (188) or P63/mcm (193).
11 L. Stahl and R. D. Ernst, Organometallics, 1983, 2, 1229.
12 M. Schlosser and G. Rauchschwalbe, J. Am. Chem. Soc., 1978, 100,
3258.
13 W. Trakarnpruk, A. M. Arif and R. D. Ernst, Organometallics, 1994,
13, 2423; J. Alfredo-Gutierrez, Ma. E. Navarro-Clemente, M. A.
Paz-Sandoval, A. M. Arif and R. D. Ernst, Organometallics, 1999,
18, 1068; R. Gleiter, I. Hyla-Kryspin, M. L. Ziegler, G. Sergeson,
J. C. Green, L. Stahl and R. D. Ernst, Organometallics, 1989, 8, 298.
Since Z = 6 and the only symmetry element 2 can accommo-
date is a mirror plane, P63cm becomes the only plausible choice.
For 3, 2/m symmetry was indicated and absences uniquely
¯
defined the space group. For 4, 3 Laue symmetry was observed,
¯
¯
compatible with space groups R3, R3, R32, R3m and R3m. The
¯
centrosymmetric R3 yielded chemically reasonable and com-
3092 J. Chem. Soc., Dalton Trans., 2000, 3086–3093