G Model
CCLET 2923 1–4
4
S.U. Tekale et al. / Chinese Chemical Letters xxx (2014) xxx–xxx
Table 4
Comparison of La2O3/TFE combination with literature methods for the synthesis of polyhydroquinolines.
Entry
Catalyst
Conditions
Yield (%)
Reference
1
2
3
4
5
6
7
HClO4–SiO2 (50 mg/mmol)
ZnO (10 mol%)
90 8C, neat, 8–20 min
80 8C, 1 h
EtOH, r.t., 2–8 h
81–96
81–94
85–95
85–95
81–95
90–99
86–95
[6]
[7]
Yb(OTf)3 (5 mol%)
Sc(OTf)3 (5 mol%)
Scolecite (100 mg/mmol)
No catalyst
[11]
EtOH, r.t., 2–6 h
[12]
EtOH, reflux, 35–60 min
H2O, reflux, 2.25–8 h
TFE, r.t., 1–1.5 h
[15]
[20]
La2O3 (10 mol%)
Present work
[10] A. Debache, L. Chouguiat, R. Boulcina, B. Carbonib, A one-pot multi-component
synthesis of dihydropyrimidinone/thione and dihydropyridine derivatives via
Biginelli and Hantzsch condensations using t-BuOK as a catalyst under sol-
vent-free conditions, Open Org. Chem. J. 6 (2012) 12–20.
[11] L.M. Wang, J. Sheng, L. Zhang, et al., Facile Yb(OTf)3 promoted one-pot synthesis of
polyhydroquinoline derivatives through Hantzsch reaction, Tetrahedron 61
(2005) 1539–1543.
[12] J.L. Donelson, R.A. Gibbs, S.K. De, An efficient one-pot synthesis of polyhydro-
quinoline derivatives through the Hantzsch four component condensation, J. Mol.
Catal. A: Chem. 256 (2006) 309–311.
[13] S.M. Baghbanian, S. Khaksar, S.M. Vahdat, M. Farhang, M. Tajbakhsh, One-step,
synthesis of Hantzsch esters and polyhydroquinoline derivatives using new
organocatalyst, Chin. Chem. Lett. 21 (2010) 563–567.
[14] S. Abdolmohammadi, Simple route to indeno[1,2-b]quinoline derivatives via a
coupling reaction catalyzed by TiO2 nanoparticles, Chin. Chem. Lett. 24 (2013)
318–320.
[15] L.S. Gadekar, S.S. Katkar, S.R. Mane, B.R. Arbad, M.K. Lande, Scolecite catalyzed
facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch
multi-component condensation, Bull. Korean Chem. Soc. 30 (2009) 2532–2534.
[16] M.M. Heravi, M. Zakeri, S. Pooremamy, H.A. Oskooie, Clean and efficient synthesis
of polyhydroquinoline derivatives under solvent-free conditions catalyzed by
morpholine, Synth. Commun. 1 (2011) 113–120.
[17] R. Pagadala, S. Maddila, V.D.B.C. Dasireddy, S.B. Jonnalagadda, Zn-VCO3 hydro-
talcite: a highly efficient and reusable heterogeneous catalyst for the Hantzsch
dihydropyridine reaction, Catal. Commun. 45 (2014) 148–152.
[18] M. Nasr-Esfahani, S.J. Hoseini, M. Montazerozohori, R. Mehrabi, H. Nasrabad,
Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the
synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under sol-
vent-free conditions, J. Mol. Catal. A: Chem. 382 (2014) 99–105.
[19] E. Mosaddegh, A. Hassankhani, An efficient and rapid Mn(III) complex catalyzed
synthesis of polyhydropyridine derivatives via Hantzsch four component con-
densation, Arab. J. Chem. 5 (2012) 315–318.
[20] B.P. Bandgar, P.E. More, V.T. Kamble, J.V. Totre, Synthesis of polyhydroquinoline
derivatives under aqueous media, Arkivoc xv (2008) 1–8.
[21] (a) N.K. Ladani, D.C. Mungra, M.P. Patel, R.G. Patel, Microwave assisted synthesis
of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroqui-
nolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial
activity assess, Chin. Chem. Lett. 22 (2011) 1407–1410;
(b) A. Kumar, R.A. Maurya, Efficient synthesis of Hantzsch esters and polyhy-
droquinoline derivatives in aqueous micelles, Synlett 6 (2008) 883–885.
[22] M. Tajbakhsh, H. Alinezhad, M. Norouzi, S. Baghery, M. Akbari, Protic pyridinium
ionic liquid as a green and highly efficient catalyst for the synthesis of polyhy-
droquinoline derivatives via Hantzsch condensation in water, J. Mol. Liq. 177
(2013) 44–48.
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
224
4. Conclusion
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
Thus inthe present work, we have demonstrated the utilityof the
combination of lanthanum oxide and trifluoroethanol (La2O3/TFE)
for the synthesis of Hantzsch polyhydroquinolines from aromatic
aldehydes, dimedone, ethylacetoacetate and ammonium acetate at
room temperature. The presence of Lewis acidic sites (La3+) in the
catalyst and trifluoromethyl group in TFE increased Lewis acidity of
the combination of La2O3/TFE system, which was sufficient enough
to catalyze the reaction at ambient temperature affording high yield
of products in short reaction time. Use of heterogeneous catalyst,
tolerance to various substituents, easy separation, short reaction
time and high yield are the significant advantages associated with
the present protocol, which make it an attractive strategy for the
synthesis of polyhydroquinolines. Thus, the present protocol
highlights and explores not only the applications of 2,2,2-
trifluoroethanol as a powerful solvent in organic synthesis but also
the emerging utility of La2O3 as a heterogeneous catalyst for the
synthesis of heterocyclic compounds. We strongly believe that
the combination will find extensive applications in future for the
synthesis of heterocyclic compounds.
244
Acknowledgments
245
246
247
Authors are thankful to the Principal, Shri Muktanand College,
Gangapur (MS) India and Principal, Deogiri College Aurangabad
(MS) India for encouraging us to carry out this work. One of the
248 Q3 authors (SUT) thanks University Grants Commission for Financial
249
assistance under a Minor Research Project [No. 47-283/12(WRO)].
250
References
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
[1] V.A. Orru, E. Ruijter, Synthesis of Heterocycles via Multicomponent Reactions, I,
Springer, Berlin, Heidelberg, 2010.
[2] C. Hulme, V. Gore, Multi-component reactions: emerging chemistry in drug
discovery from xylocain to crixivan, Curr. Med. Chem. 10 (2003) 51–80.
[3] Y. Nishiya, N. Kosaka, M. Uchii, S. Sugimoto, A potent 1,4-dihydropyridine L-type
calcium channel blocker, benidipine, promotes osteoblast differentiation, Calcif.
Tissue Int. 70 (2002) 30–39.
[4] (a) K. Sirisha, G. Achaiah, V.M. Reddy, Facile synthesis and antibacterial, antitu-
bercular, and anticancer activities of novel 1,4-dihydropyridines, Arch. Pharm.
343 (2010) 342–352;
(b) R. van der Lee, M. Pfaffendorf, P.A. van Zwieten, The differential time courses
of the vasodilator effects of various 1,4-dihydropyridines in isolated human small
arteries are correlated to their lipophilicity, J. Hypertens. 18 (2000) 1677–1682.
[5] S. Yasar, M. Corrada, R. Brookmeyer, C. Kawas, Calcium channel blockers and risk of
AD: the Baltimore longitudinal study of aging, Neurobiol. Aging 26 (2005) 157–163.
[6] M. Maheswara, V. Siddaiah, G. Lakishmi, V. Damu, C.V. Rao, An efficient one-pot
synthesis of polyhydroquinoline derivatives via Hantzsch condensation using a
heterogeneous catalyst under solvent-free conditions, Arkivoc ii (2006) 201–206.
[7] F.M. Moghaddam, H. Saeidian, Z. Mirjafary, A. Sadeghi, Rapid and efficient one-pot
synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives through the
Hantzsch four component condensation by zinc oxide, J. Iran. Chem. Soc. 6 (2009)
317–324.
[23] (a) V.P. Mehta, S.G. Modha, E. Ruijter, et al., A microwave-assisted diastereose-
lective multicomponent reaction to access dibenzo[c,e]azepinones: synthesis and
biological evaluation, J. Org. Chem. 76 (2011) 2828–2839;
(b) H. Alinezhad, M. Tajbakhsh, M. Zare, Catalyst-free one-pot synthesis of 1,4,5-
trisubstituted pyrazoles in 2,2,2-trifluoroethanol, J. Fluor. Chem. 132 (2011) 995–
1000.
[24] J.A. Kurzman, L.M. Misch, R. Seshadri, Chemistry of precious metal oxides relevant
to heterogeneous catalysis, Dalton Trans. 42 (2013) 14653–14667.
[25] L. Wang, Y. Ma, Y. Wang, S. Liu, Y. Deng, Efficient synthesis of glycerol carbonate
from glycerol and urea with lanthanum oxide as a solid base catalyst, Catal.
Commun. 12 (2011) 1458–1462.
[26] S.N. Murthy, B. Madhav, V.P. Reddy, Y.V.D. Nageswar, A new, efficient and
recyclable lanthanum(III) oxide-catalyzed C–N cross-coupling, Adv. Synth. Catal.
352 (2010) 3241–3245.
[27] A. Cwik, Z. Hell, F. Figueras, Palladium/magnesium–lanthanum mixed oxide
catalyst in the Heck reaction, Adv. Synth. Catal. 348 (2006) 523–530.
[28] M.L. Kantam, K.B. Shiva Kumar, V. Balasubramanyam, G.T. Venkanna, F. Figueras,
One-pot Wittig reaction for the synthesis of a,b-unsaturated esters using highly
basic magnesium/lanthanummixedoxide, J. Mol. Catal. A:Chem. 321(2010) 10–14.
[29] (a) S.U. Tekale, A.B. Tekale, N.S. Kanhe, S.V. Bhoraskar, R.P. Pawar, Nano-particulate
aluminium nitride/Al: an efficient and versatile heterogeneous catalyst for the
synthesis of Biginelli scaffolds, Am. Inst. Phys. Conf. Proc. 1393 (2011) 275–276;
(b) S.U.Tekale, S.S. Shisodia,S.S.Kauthale,etal.,MicronparticlesofAlN/Al:efficient,
novel, and reusable heterogeneous catalyst for the synthesis of bis(indolyl)-
methanes, Synth. Commun. 43 (2013) 1849–1858.
[8] J. Safaei-Ghomi, M.A. Ghasemzadeh, Nanocrystalline copper(II) oxide-catalyzed
one-pot four component synthesis of polyhydroquinoline derivatives under
solvent-free conditions, J. Nanostruct. 1 (2012) 243–248.
[9] S.B. Sapkal, K.F. Shelke, B.B. Shingate, M.S. Shingare, Nickel nanoparticle-catalyzed
facile and efficient one-pot synthesis of polyhydroquinoline derivatives via
Hantzsch condensation under solvent-free conditions, Tetrahedron Lett. 50
(2009) 1754–1756.
[30] R.W.G. Wyckoff, Crystal Structures: Inorganic Compounds RXn, RnMX2, RnMX3,
Interscience Publishers, New York, 1963.
Please cite this article in press as: S.U. Tekale, et al., La2O3/TFE: An efficient system for room temperature synthesis of Hantzsch