ORGANIC
LETTERS
2000
Vol. 2, No. 23
3603-3606
Facile Chemoselective Synthesis of
Dehydroalanine-Containing Peptides†
Nicole M. Okeley,‡ Yantao Zhu,‡ and Wilfred A. van der Donk*
Department of Chemistry, UniVersity of Illinois, Urbana, Illinois 61801
Received August 19, 2000
ABSTRACT
Useful methodology is described for the synthesis of dehydroalanine residues (II) within peptides. The unnatural amino acid (Se)-
phenylselenocysteine (I) can be incorporated into growing peptide chains via standard peptide synthesis procedures. Subsequent oxidative
elimination affords a dehydroalanine at the desired position. The oxidation conditions are mild and tolerate functionalities commonly found
in peptides, including variously protected cysteine residues. To illustrate its utility, cyclic lanthionines have been synthesized by this method.
The R,â-unsaturated amino acids dehydroalanine (1) and
dehydrobutyrine (2) are found in a variety of biological
containing peptides (dehydropeptides) has previously been
accomplished by a number of different methods.3 The most
common approach involves incorporation of a masked
residue into the peptide and its subsequent conversion to the
dehydroamino acid. An abundance of precursors have been
used in this fashion to generate 1 and 2 within peptides, such
as the activation and elimination of serine or threonine
derivatives,4 Hoffmann elimination from 2,3-diaminopropi-
onic acid or asparagine residues,5 and oxidative elimination
of S-alkyl or S-aryl cysteines.6 Although these methodologies
have allowed the synthesis of a number of natural products
containing dehydroamino acids, most procedures are not
polypeptides and natural products.1 In nature they impart
interesting biological activities, while synthetically they can
be versatile precursors to unnatural amino acids2 and have
been used to alter the biological and structural properties of
peptides and proteins. The synthesis of dehydroamino acid
(3) (a) For a review, see: Schmidt, U.; Lieberknecht, A.; Wild, J.
Synthesis 1988, 3, 159-172. (b) Rich, D. H.; Tam, J. P. Tetrahedron Lett.
1975, 211-212. (c) Srinivasan, A.; Stephenson, R. W.; Olsen, R. K. J.
Org. Chem. 1977, 42, 2253-2256. (d) Somekh, L.; Shanzer, A. J. Org.
Chem. 1983, 48, 907-908. (e) Paquet, A. Tetrahedron Lett. 1990, 31, 5269-
5272. (f) Zetterstrom, M.; Trogen, L.; Hammarstrom, L. G.; Juhlin, L.;
Nilsson, B.; Damberg, C.; Bartfai, T.; Langel, U¨ . Acta Chem. Scand. 1995,
49, 696-700. (g) Yamada, M.; Miyajima, T.; Horikawa, H. Tetrahedron
Lett. 1998, 39, 289-292. (h) Coghlan, P. A.; Easton, C. J. Tetrahedron
Lett. 1999, 40, 4745-4748. (i) Stohlmeyer, M. M.; Tanaka, H.; Wandless,
T. J. J. Am. Chem. Soc. 1999, 121, 6100-6101.
(4) (a) Srinivasan, A.; Stephenson, R. W.; Olsen, R. K. J. Org. Chem.
1977, 42, 2256-2260. (b) Andruszkiewicz, R.; Czerwinski, A. Synthesis
1982, 968-969. (c) Balsamini, C.; Duranti, E.; Mariani, L.; Salvatori, A.;
Spadoni, G. Synthesis 1990, 9, 779-781. (d) Berti, F.; Ebert, C.; Gardossi,
L. Tetrahedron Lett. 1992, 33, 8145-8148. (e) Ranganathan, D.; Shah,
K.; Vaish, N. J. Chem. Soc., Chem. Commun. 1992, 16, 1145-1147. (f)
Shin, C.; Okumura, K.; Ito, A.; Nakamura, Y. Chem. Lett. 1994, 1301-
1304.
† Abbreviations: Boc, tert-butoxycarbonyl; Fmoc, N-9-fluorenylmethoxy-
carbonyl; HBTU, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexa-
fluorophosphate; NMM, N-methylmorpholine.
‡ These authors contributed equally to this work.
(1) (a) Bodanszky, M.; Scozzie, J. A.; Muramatsu, I. J. Antibiot. (Tokyo)
1970, 23, 9-12. (b) Berdy, J. AdV. Appl. Microbiol. 1974, 18, 309-406.
(c) Tori, K.; Tokura, K.; Okabe, K.; Ebata, M.; Otsuka, H.; Lukacs, G.
Tetrahedron Lett. 1976, 3, 185-188 (d) Pascard, C.; Ducruix, A.; Lunel,
J.; Prange´, T. J. Am. Chem. Soc. 1977, 99, 6418-6423. (e) Pearce, C. J.;
Rinehart, K. L., Jr. J. Am. Chem. Soc. 1979, 101, 5069-5070. (f) Pedras,
M. S. C.; Taylor, J. T.; Nakashima, T. T. J. Org. Chem. 1993, 58, 4778-
4780. (g) Hamann, M. T.; Scheuer, P. J. J. Am. Chem. Soc. 1993, 115,
5825-5826. (h) Lau, R. C.; Rinehart, K. L., Jr. J. Antibiot. (Tokyo) 1994,
47, 1466-1472. (i) Sahl, H.-G.; Jack, R. W.; Bierbaum, G. Eur. J. Biochem.
1995, 230, 827-853. (j) Strohl, W. R.; Floss, H. G. Biotechnology 1995,
28, 223-238. (k) Dawson, J. F.; Holmes, C. F. Front. Biosci. 1999, 4,
D646-D658.
(2) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. Tetrahedron Lett.
1999, 40, 4099-4102.
(5) (a) Nomoto, S.; Sano, A.; Shiba, T. Tetrahedron Lett. 1979, 6, 521-
522. (b) Blettner, C.; Bradley, M. Tetrahedron Lett. 1994, 35, 467-470.
10.1021/ol006485d CCC: $19.00 © 2000 American Chemical Society
Published on Web 10/24/2000