1864
R. S. Jagtap, N. N. Joshi / Tetrahedron: Asymmetry 22 (2011) 1861–1864
ethanol (90 mL) to obtain white crystals 4.53 g (36%); mp 181–
yield. The isomer (ꢀ)-2 of the morpholine was obtained from the
precipitated salt while (+)-2 was obtained from the salt left in
the filtrate. (2S,3S)-(ꢀ)-2; yield: 39%; white solid; mp 74–76 °C;
184 °C; ½a 2D5
¼ ꢀ19:0 (c 0.42, MeOH). The second isomer of the
ꢃ
morpholine was isolated from the mother liquor. To improve the
yield, the mother liquor from the ethanol solution was basified
with aqueous NaOH and gave free morpholine, which was mixed
with the mother liquor from the ether solution. The combined free
½
a 2D5
ꢃ
¼ ꢀ100 (c 2, CHCl3); 92% ee Kromasil-5-Amycoat column; i-
PrOH/PE/TFA (20:80:0.1); 0.5 mL/min; 220 nm; minor isomer:
tR = 9.06 min; major isomer tR = 10.32 min. (2R,3R)-(+)-2; Yield
morpholine (6.18 g, 25.82 mmol) was then treated with
D
-(ꢀ)-tar-
44%; white solid; mp 74–76 °C; ½a D25
ꢃ
¼ þ102 (c 2, CHCl3) [lit.14a
taric acid (1.91 g, 12.72 mmol) in ethanol as described above. The
resulting tartrate salt, after recrystallization from ethanol, pro-
+92.7 (c 2.2, CHCl3)]; >99% ee Kromasil-5-Amycoat column; i-
PrOH/PE/TFA (20:80:0.1); 0.5 mL/min; 220 nm; major isomer:
tR = 8.68 min; minor isomer tR = 10.77 min.
vided white crystals 5.4 g (43%); mp 182–185 °C; ½a D25
¼ þ19:7
ꢃ
(c 0.44, MeOH). Basification of the salt was carried out using aque-
ous NaOH to provide the corresponding enantiomerically pure
morpholines in quantitative yield. Isomer (ꢀ)-1 of the morpholine
was obtained from the (ꢀ)-tartrate salt, while isomer (+)-1 was
obtained from the (+)-tartrate salt. (2R,3S)-(ꢀ)-1; Yield 36%: white
Acknowledgements
Financial support for this work was provided by the Depart-
ment of Science and Technology, New Delhi. One of us (R.S.J.)
thanks the CSIR, New Delhi, for a research scholarship. We are
thankful to Mrs. S. Kunte for chiral HPLC analysis.
solid; mp 73–75 °C. ½a D25
ꢃ
¼ ꢀ77:2 (c 2.59, CHCl3) [lit.14a ꢀ28.3 (c
2.6, CHCl3)]; 99% ee Kromasil-5-Amycoat column; i-PrOH/PE/TFA
(20:80:0.1); 0.5 mL/min; 220 nm; major isomer: tR = 7.76 min;
minor isomer tR = 9.34 min. (2S,3R)-(+)-1; Yield: 43%; white solid;
References
mp 73–75 °C; ½a 2D5
¼ þ76:4 (c 2.59, CHCl3); >99% ee Kromasil-5-
ꢃ
1. Wijtmans, R.; Vink, M. K. S.; Schoemaker, H. E.; van Delft, F. L.; Blaauw, R. H.;
Rutjes, F. P. J. T. Synthesis 2004, 641.
Amycoat column; i-PrOH/PE/TFA (20:80:0.1); 0.5 mL/min;
220 nm; minor isomer: tR = 8.10 min; major isomer tR = 9.04 min.
2. (a) Guillonneau, C.; Charton, Y.; Ginot, Y.-M.; Fouquier-d’ Herouel, M.-V.;
Bertrand, M.; Lockhart, B.; Lestage, P.; Goldstein, S. Eur. J. Med. Chem. 2003, 38,
1; (b) Arcelli, A.; Balducci, D.; Neto, S. D. F. E.; Porzi, G.; Sandri, M. Tetrahedron:
Asymmetry 2007, 18, 562; (c) Xu, W.; Gray, D. L.; Glase, S. A.; Barta, N. S. Bioorg.
Med. Chem. Lett. 2008, 18, 5550; (d) Malviya, M.; Kumar, Y. C. S.; Asha, D.;
Chandra, J. N. N. S.; Subhash, M. N.; Rangappa, K. S. Bioorg. Med. Chem. 2008, 16,
7095; (e) Zeng, F.; Jarkas, N.; Stehouwer, J. S.; Voll, R. J.; Owens, M. J.; Kilts, C. D.;
Nemeroff, C. B.; Goodman, M. M. Bioorg. Med. Chem. 2008, 16, 783; (f) Zask, A.;
Kaplan, J.; Verheijen, J. C.; Richard, D. J.; Curran, K.; Brooijmans, N.; Bennett, E.
M.; Toral-Barza, L.; Hollander, I.; Ayral-Kaloustian, S.; Yu, K. J. Med. Chem. 2009,
52, 7942.
4.7. ( )-Threo-2-(chloroacetylamino)-1,2-diphenylethanol 8
The procedure described above for compound 5 was followed for
7 (14.78 g, 69.30 mmol), NaHCO3 (17.44 g, 207.6 mmol), chloroace-
tyl chloride (12.5 mL, 156 mmol) and THF/MeOH (250 mL). Yield:
19.04 g (95%); white solid; mp 149–150 °C (lit.14a 147–148 °C).
3. (a) Worthing, C. R. The Pesticide Manual, 7th Ed.; British Crop Protection
Council: Alton, 1983, 265, 550.; (b) Pommer, E.-H. Pestic. Sci. 1984, 15, 285;
(c)Chemistry of Plant Protection; Bowers, W. S., Ebing, W., Fukuto, T. R., Martin,
D., Eds.; Springer: Berlin, 1986; Vol. 1, p 55; (d) Bianchi, D.; Cesti, P.; Golini, P.;
Spezia, S.; Filippini, L.; Garavaglia, C.; Mirenna, L. J. Agric. Food Chem. 1992, 40,
1989; (e) Dieckmann, H.; Strockmaier, M.; Kreuzig, R.; Bahadir, M.; Fresenius J.
Anal. Chem. 1993, 345, 784.
4.8. ( )-trans-5,6-Diphenylmorpholin-3-one 9
The procedure described above for compound 6 was followed for
8 (21.34 g, 73.64 mmol), KOH (6.2 g, 110.5 mmol), EtOH (443 mL).
Yield 17.37 g (93%); white solid; mp 185–187 °C (lit.14a 185–186 °C).
4. (a) Enders, D.; Meyer, O.; Raabe, G.; Runsink, J. Synthesis 1994, 66; (b)
Chinchilla, R.; Falvello, L. R.; Galindo, N.; Najera, C. J. Org. Chem. 2000, 65, 3034;
(c) Aoyagi, Y.; Jain, R. P.; Williams, R. M. J. Am. Chem. Soc. 2001, 123, 3472; (d)
Harwood, L. M.; Drew, M. G. B.; Hughes, D. J.; Vickers, R. J. J. Chem. Soc., Perkin
Trans. 1 2001, 1581; (e) Pansare, S. V.; Bhattacharyya, A. Tetrahedron 2003, 59,
3275.
5. (a) Dave, R.; Sasaki, N. A. Tetrahedron: Asymmetry 2006, 17, 388; (b) Nugent, W.
A. Adv. Synth. Catal. 2003, 345, 415; (c) Binder, C. M.; Bautista, A.; Zaidlewicz,
M.; Krzeminski, M. P.; Oliver, A.; Singaram, B. J. Org. Chem. 2009, 74, 2337.
6. (a) D’Hooghe, M.; Vanlangendonck, T.; Tornroos, K. W.; De Kimpe, N. J. Org.
Chem. 2006, 71, 4678; (b) Ghorai, M. K.; Shukla, D.; Das, K. J. Org. Chem. 2009,
74, 7013; (c) Bornholdt, J.; Felding, J.; Kristensen, J. L. J. Org. Chem. 2010, 75,
7454; (d) Sawant, R. T.; Waghmode, S. B. Tetrahedron 2010, 66, 2010; (e) Ritzen,
B.; Hoekman, S.; Verdasco, E. D.; van Delft, F. L.; Rutjes, F. P. J. T. J. Org. Chem.
2010, 75, 3461.
7. (a) Brenner, E.; Baldwin, R. M.; Tamagnan, G. Org. Lett. 2005, 7, 937; (b)
Siddiqui, S. A.; Narkhede, U. C.; Lahoti, R. J.; Srinivasan, K. V. Synlett 2006, 1771.
8. D’Arrigo, P.; Lattanzio, M.; Fantoni, G. P.; Servi, S. Tetrahedron: Asymmetry 1998,
9, 4021; (b) Breuning, M.; Winnacker, M.; Steiner, M. Eur. J. Org. Chem. 2007,
2100; (c) Lanman, B. A.; Myers, A. G. Org. Lett. 2004, 6, 1045; (d) Penso, M.; Lupi,
V.; Albanese, D.; Foschi, F.; Landini, D.; Tagliabue, A. Synlett 2008, 2451.
9. (a) Wilkinson, M. C. Tetrahedron Lett. 2005, 46, 4773; (b) Yar, M.; McGarrigle, E.
M.; Aggarwal, V. K. Org. Lett. 2009, 11, 257; (c) Bagnoli, L.; Scarponi, C.; Rossi, M.
G.; Testaferri, L.; Tiecco, M. Chem. Eur. J. 2011, 17, 993.
10. (a) Dave, R.; Sasaki, N. A. Org. Lett. 2004, 6, 15; (b) Leathen, M. L.; Rosen, B. R.;
Wolfe, J. P. J. Org. Chem. 2009, 74, 5107.
11. (a) Prasad, K. R. K.; Joshi, N. N. J. Org. Chem. 1997, 62, 3770; Prasad, K. R. K.;
Joshi, N. N. Tetrahedron: Asymmetry 1996, 7, 1957; (c) Patil, M. N.; Gonnade, R.
G.; Joshi, N. N. Tetrahedron 2010, 66, 5036.
12. (a) Weijlard, J.; Pfister, K. 3rd.; Swanezy, E. F.; Robinson, C. A.; Tishler, M. J. Am.
Chem. Soc. 1951, 73, 1216; (b) Saigo, K.; Ogawa, S.; Kikuchi, S.; Kasahara, A.;
Nohira, H. Bull. Chem. Soc. Jpn. 1982, 55, 1568.
13. (a) Kashima, C.; Harada, K. J. Chem. Soc., Perkin Trans. 1 1988, 1521; (b) Liang, P.-
H.; Hsin, L.-W.; Cheng, C.-Y. Bioorg. Med. Chem. 2002, 10, 3267.
4.9. ( )-trans-2,3-Diphenylmorpholine 2
The same procedure described above for compound 1 was fol-
lowed for 9 (3.6 g, 14.2 mmol), LiAlH4 (1.34 g, 35.3 mmol) and
THF (160 mL). Yield 2.17 g (64%); white solid; mp 85–87 °C; IR
(CHCl3): 3328, 3018, 2862, 1492, 1450 cmꢀ1 1H NMR (200 MHz,
;
CDCl3): d 1.83 (bs s, 1H, NH), 3.0–3.13 (m, 1H), 3.27 (td, J = 11.5,
3.41 Hz, 1H), 3.77 (d, J = 8.84 Hz, 1H), 3.93 (td, J = 11.24, 2.65 Hz,
1H), 4.05–4.16 (m, 1H), 4.36 (d, J = 8.84 Hz, 1H) 6.95–7.20 (m,
10H) ppm; 13C NMR (50 MHz, CDCl3): d 46.5, 67.4, 67.9, 85.2,
127.3, 127.4, 127.5, 127.6, 127.8, 128.0, 139.0, 140.1 ppm; Anal.
Calcd for C16H17NO: C, 80.30; H, 7.16; N, 5.85. Found: C, 80.29;
H, 7.46; N, 5.90.
4.10. Resolution of ( )-2
To a solution of ( )-2 (7.42 g, 31.03 mmol) in MeOH (120 mL)
was added (R)-(ꢀ)-mandelic acid (4.73 g, 31.03 mmol) and the
reaction mixture was stirred at room temperature for 1 h. Metha-
nol was then evaporated on a rotary evaporator. The resulting salt
was dissolved in boiling isopropanol (160 mL). The mixture was
then allowed to cool to room temperature, stirred for 2 h, and fil-
tered. The residue was washed with hot ethyl acetate to obtain
one of the diastereomeric salts as a white precipitate (4.74 g,
39%); mp 175–177 °C; ½a D25
¼ ꢀ116 (c 1, MeOH). The second iso-
ꢃ
mer of the salt was obtained from the mother liquor by evapora-
tion followed by recrystallization from ethyl acetate (5.36 g,
14. (a) Stefanovsky, J. N.; Spassov, S. L.; Kurtev, B. J.; Balla, M.; Otvos, L. Chem. Ber.
1969, 102, 717; see also (b) Lutz, R. E.; Baker, J. W. J. Org. Chem. 1956, 21, 49.
15. Jacques, Jean; Collet, Andre
´; Wilen, Samuel H. Enantiomers, Racemates and
Resolution; Wiley: New York, 1981.
16. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, Third Ed.;
Pergamon: Oxford, NewYork, NY, 1988.
44%); mp 150–151 °C; ½a D25
¼ þ32 (c 1, MeOH). Basification of
ꢃ
the salt was carried out using aqueous NaHCO3 to provide the cor-
responding enantiomerically pure morpholines in quantitative