4
Tetrahedron
To show the importance of the prepared aza-aryl vinyl ethers
2, unoptimized 1,3-dipolar cycloaddition reaction was performed
between 2f and the chiral nitrone formed in situ from reaction of
L-gulose hydroxylamine30 and ethyl glyoxalate (Scheme 5). The
cycloadduct 7 was obtained as a mixture of 4 diastereomers in
96% yield, which gave a single stereoisomer (dr 98:2) in 41%
yield after column chromatography. The relative and absolute
configurations of 7 were tentatively assigned by analogy with
adducts of known configuration22c obtained from D-mannosyl
nitrone. Removal of the chiral auxiliary will be the next step to
give enantiomerically pure isoxazolidines equipped with both an
ester function and an aza-aryloxy side-chain as 5-aryloxy
oxaproline unit, ready for use in our ingoing project.
6. Winternheimer, D. J.; Shade, R. E.; Merlic, C. A. Synthesis 2010, 15, 2497–
2511.x
7. (a) Shostakovsky, M. F.; Bogdanova, A, V. J. Gen. Chem. 1947, 17, 565-
574; 1950, 20, 1315. (b) Reppe, W. Ann. 1956, 601, 84–111.
8. (a) Okimoto, Y.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124,
1590–1591. (b) Hirabayashi, T.; Sakaguchi, S.; Ishii, Y. Org. Synth. 2005, 82,
55–58.
9. Bosch, M.; Schlaf, M. J. Org. Chem. 2003, 68, 5225–5227.
10. Nakamura, A.; Tokunaga, M. Tetrahedron Lett. 2008, 49, 3729–3732.
11. (a) Adelman, R. L. US Patent 1951 2579411 19511218. (b) Watanabe,
W.H.; Conlon, L. E. J. Amer. Chem. Soc. 1957, 79, 2828–2833.
12. (a) Wan, Z.; Jones, C. D.; Koenig, T. M.; Pu, Y. J.; Mitchell, D.
Tetrahedron Lett. 2003, 49, 8257–8259. (b) Taillefer, M.; Ouali, A.; Renard,
B.; Spindler, J.-F. Chem. Eur. J. 2006, 12, 5301–5313. (c) Ouali, A.; Laurent,
R.; Caminade, A.-M.; Majoral, J.-P.; Taillefer, M. J. Am. Chem. Soc. 2006,
128, 15990–15991.
13. McKinley, N. F.; O'Shea, D. F. J. Org. Chem. 2004, 69, 5087–5092.
14. Blouin, M.; Frenette, R. J. Org. Chem. 2001, 66, 9043–9045.
15. (a) Nerdel, F.; Buddrus, J.; Brodowski, W.; Hentschel, P.; Klamann, D.;
Weyerstahl, P. Justus Liebigs Ann. Chem. 1967, 710, 36-58. (b) Mizuno, K.;
Kimura, Y.; Otsuji, Y. Synthesis 1979, 9, 688-689.
16. (a) Fu, G-Y.;Yu, L-M.;Mao, X-C.; Wu, D. J. Chem. Res. 2008, 597–599.
(b) Zhang, J-L., Sheng, S-R.; Lin, S-Y. J. Chem. Res. 2009, 287–289. (c) Yu,
L-M.; Tang, N.; Sheng, S.;Chen, R.; Liu, X.; Cai, M.; Chin. J. Chem. 2012,
30, 1027–1030.
O
O
N
O
L-gulosyl
EtOOC
O
O
H
L-gulosyl
EtO2C
2f
O
N
N
OH
O
O
N
CHCl3, 80 °C
96% yield
H
L-gulose-NHOH
+
O
diastereomeric mixture
after colum chromatography gave
7, 98:2 dr, 41% yield
H
CO2Et
17. Dujardin, G.; Rossignol, S.; Brown, E. Tetrahedron Lett., 1995, 36, 1653–
1656.
N
18. Yotphan, S.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2010, 12, 2978–
2981.
O
HN
O
19. Andrews, M. D. et al., PCT Int Appl., 2012137089, 11-10-2012.
20. (a) Skvortsova, G. G.; Tirina, S. M.; Khim. Geterotsikl. Soedin. 1968,
1132–1133. (b) Skvortsova, G. G.; Tirina, S. M.; Voronov, V. K. Khim.
Geterotsikl.Soedin. 1971, 798-800; (c) Shostakoskii, M. F.; Skvortsova, G. G.;
Tirina, S. M.; Khim. Geterotsikl.Soedin. 1971, 917–920; (d) Skvortsova, G.
G.; Andriyankov, M. A.; Stepanova Z. V.; Kashik T. V.; Ponomareva, S. V.;
Kim, D. G. Khim. Geterotsikl. Soedin. 1976, 375.
21. This unique preparation was reported to afford the target O-vinyl
compounds as sole or main products, combined in this last case with minor N-
vinyl compounds (42 and 15% yields respectively for 2-hydroxypyridine20a).
22. (a) Nguyen, T. B.; Martel, A.; Dhal, R.; Dujardin, G. Org. Lett. 2008, 10,
4493–4496. (b) Nguyen, T. B.; Beauseigneur, A.; Martel, A.; Dhal, R.;
Laurent, M. Y.; Dujardin, G. J. Org. Chem. 2010, 75, 611–620. (c) Zhang,
X. ; Cividino, P.; Poisson, J.-F.; Shpak-Kraievskyi, P.; Laurent, M. Y.; Martel,
A.; Dujardin, G.; Py, S. Org. Lett. 2014, 16, 1936–1939. (d) Ben Ayed, K.;
Beauchard, A.; Poisson, J.-F.; Py, S.; Laurent, M. Y.; Martel, A.; Ammar, H.;
Abid, S.; Dujardin, G.; Eur. J. Org. Chem. 2014, 2924–2932. (e) Shpak-
Kraievskyi, P.; Mankou Makaya, A.; Beauchard, A.; Martel, A.; Laurent, M.
Y.; Dujardin, G. Eur. J. Org. Chem. 2015, 2924–2932.
EtO2C
oxaproline derivative
Scheme 5. 1,3-DC reaction of chiral nitrone with vinyl ether 2f.
In conclusion, a 3-step synthesis of vinyl ethers derived from
N-heteroaromatic bromides was developed through a sequential
Cu-catalyzed C-O coupling, chlorination and elimination process.
Although not general, this reaction pattern allows a facile
synthesis of N-heteroaryl vinyl ethers, including those derived
from 4-hydroxypyridine and 4-hydroxyquinoline which are
unavailable compounds by acetylene-free methods.
Acknowledgments
Financial support of this study by Grants from Egypt-France
Scientific and Technological Cooperation Program Hubert Curien
“IMHOTEP” (n° 33165UG), The Academy of Scientific
Research and Technology (ASRT) and Campus France are
gratefully acknowledged.
23. Structures of vinyl ethers obtained in our study (O-vinyl vs N-vinyl) were
1
unambiguously attributed by comparison of H and 13C NMR data with those
described by the Russian group cited before20 for a wide range of O-vinyl and
N-vinyl derivatives of hydroxypyridines and quinolines: (a) Afonin, A. V.;
Andriyankova, L. K.; Pertsikov, B. Z.; Voronov, V. K. Zhur.. Organich.
Khim. 1976, 11, 2451–2454; (b) Afonin, A. V.; Andriyankova, L. K.;
Pertsikov, B. Z.; Voronov, V. K. Russ. J. Org. Chem. 1997, 33, 1427–1433.
(c) Afonin, A. V.; Ushakov, I. A.; Kuznetsova, S. Yu.; Andriyankova, L. V.
Magn. Reson. Chem. 2003, 41, 557–566 and references cited therein.
24. Froidevaux, P.; Harrowfield, J. M.; Sobolev, A. N. Inorg. Chem. 2000, 39,
4678–4687.
Supplementary Material
Supplementary material is available for all experimental
procedures and characterization data of compounds 2a-h, 3a,b,i-
k, 4b, 4’b, 6a,c-k and chlorinated intermediates 6’a,c-k.
25. The crude product contained also significant amounts of dimers resulting
from the coupling of one equivalent of dibromoethane to two equivalents of
the substrate.
References and notes
26. Nielsen, S. F.; Nielsen, E. O.; Olsen, G. M.; Liljefors, T.; Peters, D. J.
Med. Chem. 2000, 43, 2217–2226.
1. (a) Maligres, P. E.; Waters, M. M.; Lee, J.; Reamer, R. A.; Askin, D.;
Ashwood, M. S.; Cameron, M. J. Org. Chem. 2002, 67, 1093–1101. (b)
Wenkert, E.; Alonso, M. E.; Buckwalter, B. L.; Sanchez, E. L. J. Am. Chem.
Soc. 1983, 105, 2021–2029.
2. (a) Martin, J. G.; Hill, R. K. Chem. Rev. 1961, 61, 537–562. (b) Pindur, U.;
Gundula, L.; Otto, C. Chem. Rev. 1993, 93, 741–761. (c) Oppolzer, W. In
Comprehensive Organic Synthesis; Trost B. M.; Fleming I., Eds.; Pergamon:
Oxford, 1991; Vol. 5, Part 4.1, pp 315. (d) Nguyen, T. B.; Martel, A.; Gaulon,
C.; Dhal, R.; Dujardin, G. Org. Prep. Proc. Int. 2010, 42, 387–431.
3. Fujimura, O.; Fu, G. C.; Grubbs, R. H. J. Org. Chem. 1994, 59, 4029–
4031.
27. Metal-catalyzed coupling with ethylene glycol (a) Liu, Y.; Park, S. K.;
Xiao, Y.; Chae, J. Org. Biomol. Chem. 2014, 12, 4747–4753. Base-mediated
coupling with ethylene glycol (b) Katritzky, A. R.; Murugan, R. J. Chem. Soc.
Perkin Trans II, 1987, 1867–1869. (c) Albrecht, B. K. et al. U. S. Pat. Appl.
Publ. 20150065522 A1.
28. Newkome, G. R.; Nayak, A.; McClure, G. L.; Danesh-Khoshboo, F.;
Broussard-Simpson, J. J. Org. Chem. 1977, 42, 1500–1508.
29. Somekawa, K.; Okuhira, H.; Sendayama, M.; Suishu, T.; Shimo, T. J.
Org. Chem. 1992, 57, 5708–5712.
30. (a) Juarez-Garcia, M. E.; Yu, S.; Bode, J. W. Tetrahedron 2010, 66, 4841–
4853. (b) Pattabiraman, V. R.; Ogunkoya, A. O.; Bode, J. W. Angew. Chem.
Int. Ed. 2012, 51, 5114–5118.
4. Kojima, K.; Sawamoto, M.; Higashimura, T. Macromolecules 1989, 22,
1552–1557.
5. Gopal, D.; Rajagopalan, Z. Tetrahedron Lett. 1987, 28, 5327–5330.