ArH), 7.86 (1H, br s, NH); dC (67.8 MHz, CDCl3) 19.7 (CH3, 2 ¥
ArCH3 overlapping), 20.9 (CH3, ArCH3), 120.4 (CH, 2 ¥ aromatic
CH), 124.4 (CH, aromatic CH), 128.4 (CH, aromatic CH), 129.6
(CH, 2 ¥ aromatic CH), 130.0 (CH, aromatic CH), 132.8 (C,
aromatic C), 134.0 (C, aromatic C), 135.8 (C, aromatic C), 137.2
(C, aromatic C), 140.8 (C, aromatic C), 165.8 (C, CO). MS m/z
239 (M+, 20%), 133 (100), 105 (40), 77 (72).
(CH, aromatic CH), 129.3 (C, aromatic C), 129.59, 129.62 (2 ¥
CH, 2 ¥ aromatic CH), 134.5, 135.0 (2 ¥ C, 2 ¥ aromatic C),
136.5 (CH, aromatic CH), 169.6 (C, CO); HRMS (ES+): Exact
mass calculated for C22H25NOS35Cl [M+H]+ 386.1345. Found
386.1338; m/z (ES+) 388.0 {[(C22H24NOS37Cl)+H+], 40%}, 386.0
{[(C22H24NOS35Cl)+H+], 100%}.
Method b: Microwave conditions. 2,3-Dimethyl-1,3-butadiene
(1.5 mL, 6.3 mmol) and 3a (0.2 g, 0.6 mmol) were placed in a
sealed microwave reaction vessel with stirring and subsequently
heated for 30 min at 300 W at 100 ◦C. The excess diene was
then evaporated at reduced pressure to give the crude product as
an orange oil. Following purification by column chromatography
using hexane–ethyl acetate as eluent (gradient elution 5–20% ethyl
acetate), 12a was obtained as a white solid (0.08 g, 59%); (Found
C, 80.16; H, 7.21; N, 5.59. C16H17NO requires C, 80.30; H, 7.16; N,
5.85%); nmax/cm-1 (KBr) 3337 (NH), 2916 (CH), 1652 (CO), 1611,
1596, 1521; dH (400 MHz, CDCl3) 2.33 (3H, s, one of ArCH3),
2.34 (6H, s, 2 ¥ ArCH3), 7.17 (2H, d, J 8.4, ArH), 7.24 [1H, d,
J 7.6, aromatic C(5)H], 7.52 (2H, d, J 8.4, ArH), 7.58 [1H, dd,
J 7.6, 1.6, aromatic C(6)H], 7.65 [1H, d, J 1.6, aromatic C(2)H],
7.72 (1H, br s, NH); dC (75.5 MHz, CDCl3) 19.78, 19.82, 20.9
(3 ¥ CH3, 3 ¥ ArCH3), 120.2, 124.3, 128.3, 129.5, 129.9 (5 ¥
CH, 5 ¥ aromatic CH), 132.6, 134.0, 135.6, 137.2, 140.9 (5 ¥
C, 5 ¥ aromatic C), 165.7 (C, CO); HRMS (ES+): Exact mass
calculated for C16H18NO [M+H]+ 240.1388. Found 240.1391; m/z
(ES+) 240.0 {[(C16H17NO)+H+], 100%}.
Acknowledgements
IRCSET, Forbairt and University College Cork are gratefully
acknowledged for funding this work. The authors wish to thank
final year project students D. Foley and P. Ward for their input
into some aspects of this work.
References
1 W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Permagon
Press, 1990.
2 I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley-
Interscience, London, 1976.
3 A. Padwa, Prog. Heterocycl. Chem., 1995, 7, 21.
4 T. Kametani and S. Hibino, Adv. Heterocycl. Chem., 1987, 42, 245.
5 E. M. Stocking and R. M. Williams, Angew. Chem., Int. Ed., 2003, 42,
3078.
6 R. M. Williams and R. J. Cox, Acc. Chem. Res., 2003, 36, 127.
7 T. L. Gilchrist and R. C. Storr, Organic Reactions and Orbital
Symmetry, Cambridge University Press, 2nd edn, 1979.
8 J. L. G. Ruano and B. C. de la Plata, Organosulfur Chemistry I, 1999,
204, 1.
9 Y. Hayashi, S. Samanta, H. Gotoh and H. Ishikawa, Angew. Chem.,
Int. Ed., 2008, 47, 6634.
10 W. Pei, Y. G. Wang, Y. J. Wang and L. Sun, Synthesis, 2008, 3383.
11 Y. Nishiuchi, H. Nakano, Y. Araki, R. Sato, R. Fujita, K. Uwai and
M. Takeshita, Heterocycles, 2009, 77, 1323.
(1R*,6R*)-1-(Phenylthio)-6-chloro-3,4-dimethyl-N-(4-methyl-
phenyl)cyclohex-3-enecarboxamide
13a. 2,3-Dimethyl-1,3-
butadiene (1.4 mL, 6.6 mmol) and N-(4-fluorophenyl)-Z-3-
chloro-2-(phenylthio)propenamide 5a (0.2 g, 0.6 mmol) were
placed in a sealed microwave reaction vessel wit◦h stirring and
subsequently heated for 120 min at 300 W at 180 C. The excess
diene was then evaporated at reduced pressure to give the crude
product as a pale yellow solid. Following purification by column
chromatography using hexane–ethyl acetate 85 : 15 as eluent, the
substituted cyclohexene product 13a was obtained as a white solid
(0.2 g, 91%), mp 112–114 ◦C; Found C, 68.30; H, 6.37; N, 3.67; S,
8.67; Cl, 8.78. C22H24ClNOS requires C, 68.46; H, 6.27; N, 3.63;
S, 8.31; Cl, 9.19%; nmax/cm-1 (KBr) 3332 (NH), 2922 (CH), 1679
(CO), 1517; dH (400 MHz, CDCl3) 1.25 (3H, s, one of CH3), 1.67
(3H, s, one of CH3), 1.82 [1H, br d, A of AB system, JAB 18.0,
one of C(2)H2], 2.35 (3H, s, ArCH3), 2.57–2.67 [1H, m, one of
C(5)H2], 2.80–2.96 [2H, m, one of C(5)H2 & one of C(2)H2], 4.76
[1H, dd, J 9.6, 6.0, C(6)H], 7.19 (2H, d, J 8.4, ArH), 7.27–7.34
(2H, m, ArH), 7.35–7.42 (1H, m, ArH), 7.43–7.48 (2H, m, ArH),
7.50–7.55 (2H, m, ArH), 9.76 (1H, br s, NH); dC (75.5 MHz,
CDCl3) 17.9, 18.3, 20.9 (3 ¥ CH3, 3 ¥ CH3), 38.4, 40.1 [2 ¥
CH2, C(2)H2 & C(5)H2], 61.6 [CH, C(6)H], 65.3 [C, C(1)], 120.1
(CH, aromatic CH), 122.7, 124.0 [2 ¥ C, C(3) & C(4)], 128.9
12 J. L. Garcia Ruano, A. Esteban Gamboa, A. M. Martin Castro, J. H.
Rodriguez and M. I. Lopez-Solera, J. Org. Chem., 1998, 63, 3324.
13 J. L. G. Ruano, C. Alemparte, A. M. M. Castro, H. Adams and J. H. R.
Ramos, J. Org. Chem., 2000, 65, 7938.
14 M. Murphy, D. Lynch, M. Schaeffer, M. Kissane, J. Chopra, E. O’Brien,
A. Ford, G. Ferguson and A. R. Maguire, Org. Biomol. Chem., 2007,
5, 1228.
15 M. Kissane, D. Lynch, J. Chopra, S. E. Lawrence and A. R. Maguire,
Tetrahedron: Asymmetry, 2008, 19, 1256.
16 M. Kissane, S. E. Lawrence and A. R. Maguire, Org. Biomol. Chem.,
2010, 8, 2735.
17 M. Kissane, S. E. Lawrence and A. R. Maguire, Tetrahedron, 2010, 66,
4564.
18 M. Kissane, M. Murphy, D. Lynch, A. Ford and A. R. Maguire,
Tetrahedron, 2008, 64, 7639.
19 M. Kissane, S. E. Lawrence and A. R. Maguire, Tetrahedron: Asymme-
try, 2010, 21, 871.
20 M. E. Jung and L. J. Street, J. Am. Chem. Soc., 1984, 106, 8327.
21 R. V. Honeychuck, P. V. Bonnesen, J. Farahi and W. H. Hersh, J. Org.
Chem., 1987, 52, 5293.
22 J. C. Davis Jr., and T. V. Van Auken, J. Am. Chem. Soc., 1965, 87, 3900.
23 D. A. Evans, S. J. Miller and T. Lectka, J. Am. Chem. Soc., 1993, 115,
6460.
24 J. R. Durig and D. A. C. Compton, J. Phys. Chem., 1979, 83, 2879.
25 X. Liu and J. K. Snyder, J. Org. Chem., 2008, 73, 2935.
26 J. R. Henderson, M. Parvez and B. A. Keay, Org. Lett., 2007, 9, 5167.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 5602–5613 | 5613
©