ORGANIC
LETTERS
2000
Vol. 2, No. 24
3849-3851
Synthesis and Structure of a New
[6.6]Metacyclophane with Enediyne
Bridges†
,‡
Manivannan Srinivasan,‡ Sethuraman Sankararaman,* Ina Dix,§ and
Peter G. Jones|
Department of Chemistry, Indian Institute of Technology, Madras-600 036, India,
Institute of Organic Chemistry, UniVersity of Braunschweig, D-38106, Germany, and
Institute of Analytical and Inorganic Chemistry, UniVersity of Braunschweig,
D-38106, Germany
Received September 10, 2000
ABSTRACT
Synthesis and structure of a novel [6.6]metacyclophane with enediyne bridges is reported.
The chemistry of enediynes gained prominence among
synthetic and theoretical chemists and also biologists after
the discovery of enediyne antibiotics during the late 1980s.1
Several synthetic model systems have been prepared incor-
porating the basic enediyne skeleton, namely, the hexa-3-
ene-1,5-diyne unit, in order to study the mechanism of
thermally induced cycloaromatization, commonly known as
the Bergman cyclization.2 Synthesis of extended cyclophanes
is another area3 that is actively pursued by synthetic chemists,
and in recent years several cyclophanes bearing extended
acetylenic units as bridges have been constructed.4 Some of
these cyclophanes serve as precursors for the synthesis of
fullerenes, their subunits, graphyne subunits, and nanotubes.5
Cyclophanes bearing enediyne units as the bridges (ene-
diynephanes) offer enormous potential to study both of these
areas in a single system. For example, the strain and the
distance between the termini of the enediyne unit, which is
(3) Hopf, H. Classics in Hydrocarbon Chemistry. Synthesis, Concepts,
PerspectiVes; Wiley-VCH: Weinheim, 2000; Chapter 15, pp 457-472.
Young, J. K.; Moore, J. S. In Modern Acetylenic Chemistry; Stang, P. J.,
Diederich, F., Eds.; VCH: Weinheim, 1995; Chapter 12, pp 426-432.
Zhang, J.; Pesak, D. J.; Ludwick, J. L.; Moore, J. S. J. Am. Chem. Soc.
1994, 116, 4227-4239.
(4) Haley, M. Synlett 1998, 557-565. Kehoe, J. M.; Kiley, J. H.; English,
J. J.; Johnson, C. A.; Petersen, R. C.; Haley, M. M. Org. Lett. 2000, 2,
969-972. Bodwell, G. J.; Houghton, T. J.; Miller, D. Tetrahedron Lett.
1998, 39, 2231-2234. Ensley, H. E.; Mahadevan, S.; Mague, J. Tetrahedron
Lett. 1996, 37, 6255-6258. Hopf, H.; Jones, P. G.; Bubenitschek, P.;
Werner, C. Angew. Chem., Int. Ed. Engl. 1995, 34, 2367-2370. Collins,
S. K.; Yap, G. P. A.; Fallis, A. G. Angew. Chem., Int. Ed. 2000, 29, 385-
388. Kawase, T.; Ueda, N.; Oda, M. Tetrahedron Lett. 1997, 38, 6681-
6684. Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.;
Yoshida, Z. J. Am. Chem. Soc. 2000, 122, 7404-7405.
† Dedicated to Professor Dr. Henning Hopf on the occasion of his 60th
birthday.
‡ Indian Institute of Technology.
§ Institute of Organic Chemistry, University of Braunschweig.
| Institute of Analytical and Inorganic Chemistry, University of Braun-
schweig.
(1) For reviews, see: Nicolaou, K. C.; Smith, A. L. In Modern Acetylenic
Chemistry; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, 1995; Chapter
7, pp 203-283. Maier, M. E. Synlett 1995, 13-26. Nicolaou, K. C.; Smith,
A. L. Acc. Chem. Res. 1992, 25, 497-503. Nicolaou, K. C.; Dai, W.-M.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1387-1416.
(2) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25-31. Jones, R. R.;
Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660-661.
(5) Rubin, Y.; Parker, T. C.; Khan, S. I.; Holliman, C. L.; McElvany, S.
W. J. Am. Chem. Soc. 1996, 118, 5308-5309. Jux, N.; Holczer, K.; Rubin,
Y. Angew. Chem., Int. Ed. Engl. 1996, 35, 1986-1990. Anthony, J. E.;
Khan, S. I.; Rubin, Y. Tetrahedron Lett. 1997, 38, 3499-3502. Dosa, P.
I.; Erben, C.; Iyer, V. S.; Vollhardt, K. P. C.; Wasser, I. M. J. Am. Chem.
Soc. 1999, 121, 10430-10431. Boese, R.; Matzger, A. J.; Vollhardt, K. P.
C. J. Am. Chem. Soc. 1997, 119, 2052-2053.
10.1021/ol006570l CCC: $19.00 © 2000 American Chemical Society
Published on Web 11/02/2000