C O M M U N I C A T I O N S
Supporting Information Available: Theoretical energy calculation,
characterization, spectroscopic data, and discussion. This material is
References
(1) (a) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S.
Chem. ReV. 2001, 101, 3893-4011. (b) Nakano, T.; Okamoto, Y. Chem.
ReV. 2001, 101, 4013-4038. (c) Yashima, E.; Maeda, K.; Nishimura, T.
Chem.sEur. J. 2004, 10, 42-51. (d) Green, M. M.; Peterson, N. C.; Sato,
T.; Teramoto, A.; Cook, R.; Lifson, S. Science 1995, 268, 1860-1866.
(2) Zimmerman, S. S.; Pottle, M. S.; Ne´methy, G.; Scheraga, H. A.
Macromolecules 1977, 10, 1-9.
(3) For helical reversal at the C-terminus, see: (a) Schellman, C. In Protein
Folding; Jaenicke, R., Ed.; North-Holland Biomedical Press, Elsevier:
Amsterdam, 1980; pp 53-61. (b) Aurora, R.; Srinivasan, R.; Rose, G. D.
Science 1994, 264, 1126-1130. (c) Sagermann, M.; Mårtensson, L.-G.;
Baase, W. A.; Matthews, B. W. Protein Sci. 2002, 11, 516-521. (d) Bang,
D.; Gribenko, A. V.; Tereshko, V.; Kossiakoff, A. A.; Kent, S. B.;
Makhatadze, G. I. Nat. Chem. Biol. 2006, 2, 139-143.
(4) An L/D-block-type peptide was demonstrated to adopt a unique heterochiral
helix: (a) Banerjee, A.; Raghothama, S. R.; Karle, I. L.; Balaram, P.
Biopolymers 1996, 39, 279-285. For homochiral/heterochiral helices along
a single chain, see also: (b) Rudresh; Ramakumar, S.; Ramagopal, U.
A.; Inai, Y.; Goel, S.; Sahal, D.; Chauhan, V. S. Structure 2004, 12, 389-
396. (c) Aravinda, S.; Shamala, N.; Bandyopadhyay, A.; Balaram, P. J.
Am. Chem. Soc. 2003, 125, 15065-15075. Polypeptide linking two types
of L-sequences undergoes unique thermal-driven helix inversion: (d)
Ushiyama, A.; Furuya, H.; Abe, A.; Yamazaki, T. Polym. J. 2002, 34,
450-454.
(5) For elegant simulation of heterochiral and homochiral helices, see: (a)
Nanda, V.; Degrado, W. F. J. Am. Chem. Soc. 2004, 126, 14459-14467.
(b) Nanda, V.; Degrado, W. F. J. Am. Chem. Soc. 2006, 128, 809-816.
(6) For the domino-type induction of helicity, see: (a) Okamoto, Y.; Matsuda,
M.; Nakano, T.; Yashima, E. Polym. J. 1993, 25, 391-396. (b) Dolain,
C.; Jiang, H.; Le´ger, J.-M.; Guionneau, P.; Huc, I. J. Am. Chem. Soc.
2005, 127, 12943-12951. (c) Mazaleyrat, J.-P.; Wright, K.; Gaucher, A.;
Toulemonde, N.; Wakselman, M.; Oancea, S.; Peggion, C.; Formaggio,
F.; Setnicˇka, V.: Keiderling, T. A.; Toniolo, C. J. Am. Chem. Soc. 2004,
126, 12874-12879. (d) Pieroni, O.; Fissi, A.; Pratesi, C.; Temussi, P. A.;
Ciardelli, F. J. Am. Chem. Soc. 1991, 113, 6338-6340. (e) Inai, Y.;
Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.; Yamashita, M.
J. Am. Chem. Soc. 2000, 122, 11731-11732. (f) Inai, Y.; Ousaka, N.;
Okabe, T. J. Am. Chem. Soc. 2003, 125, 8151-8162. (g) Inai, Y.; Ashitaka,
S.; Hirabayashi, T. Polym. J. 1999, 31, 246-253.
Figure 3. Heterochiral helix (type I) and homochiral helix (type II)
simulated in acetyl-L-Ala20-(Aib-∆ZPhe)4-Aib-OMe.18 The chiral segment
(light-red carbon) adopts an essentially right-handed R-helix. In type I, the
achiral segment (blue carbon) takes a left-handed 310-helix, in which the
red arrow indicates 6 f 1 and 5 f 2 hydrogen bonds for the Schellman
motif.3,4c,5a,7a
chiral length effect originates from not only chirality of the boundary
L-Leu but also conformational asymmetry of the preceding L-
sequence. Thus, left-handed helicity in NP is induced through the
C-terminal inversion of the right-handed R-helix.
CD data in other solvents are summarized in ref 11. Dichlo-
romethane and chloroform showed a similar tendency: elongation
of the L-sequence weakens the preference for a right-handed helicity,
commonly inducing a left-handed helicity in NP. Acetonitrile or
alcohols led to induction of left-handed helicity in N1-N5. NP
also underwent induction of the left-handed helix in methanol,
ethanol, and 2-methyl-1-propanol, while the split pattern was
somewhat distorted in tetrahydrofuran. In the three alcohols, left-
handed helical tendency in N4, N5, and NP seems to be promoted
with the L-sequence length. In most solvents (Figure 2B), the achiral
sequence of NP prefers a left-handed helicity. This solvent-
insensitive formation of a heterochiral helix might be consistent
with the view that conformational inversion at the C-terminal Gly
of an R-helix is based on stereochemical origin rather than solvent
effect.3d
Such a heterochiral helical structure was simulated by semiem-
pirical MO (AM1)11,15 computation. A stable structure found (type
I, Figure 3) involves 6 f 1 and 5 f 2 hydrogen bonds for the
Schellman motif at the boundary, favoring a bending form.3,4c,5a,7a
In contrast, the homochiral helix (type II, Figure 3) preferred a
more straight form.16 Here the type I was predicted to be slightly
more preferential in solution.17 Thus the heterochiral helix might
be stabilized in solution through local inversion in helix sense and
molecular shape advantageous to solvent effects.17
Consequently, we have demonstrated that a heterochiral helix
can be induced through the chiral switch generated by the
L-sequence length. In other words, the local inversion derived from
the Schellman motif is proven to nucleate the helix sense in the
following achiral segment to function as the domino effect, when
the segment is composed of strong helical inducers. These findings
not only provide novel insights into peptide design of a heterochiral
helix but also support an elementary model for homochiral-
heterochiral origins in the evolution of hierarchical structures from
primitive chiral/achiral sequences.5
(7) A helical chain designed delicately with chiral/achiral residues undergoes
chain reversal through the site-specific Schellman motif to exhibit unique
structures: (a) Datta, S.; Uma, M. V.; Shamala, N.; Balaram, P.
Biopolymers 1999, 50, 13-22. (b) Rajashankar, K. R.; Ramakumar, S.;
Mal, T. K.; Jain, R. M.; Chauhan, V. S. Angew. Chem., Int. Ed. Engl.
1996, 35, 765-768. (c) Karle, I. L. Biopolymers 2001, 60, 351-365. See
also ref 4c. In contrast, we have employed a series of the chiral/achiral
block sequences to highlight chain length effect of the N-terminal
L-sequence on induction of a heterochiral helix to demonstrate Figure 1.
For artificial chiral-achiral block polymer, see: (d) Takei, F.; Yanai, K.;
Onitsuka, K.; Takahashi, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1554-
1556.
(8) While solvent effect on helical sense of peptide N1 was partly reported,6g
the present data have been updated for peptide N1 resynthesized. See
also: Inai, Y. Recent Research DeVelopments in Macromolecules;
Research Signpost: India, 2002; Chapter 2.
(9) For helix propensity of amino acid, see: (a) Richardson, J. M.; Lopez,
M. M.; Makhatadze, G. I. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 1413-
1418. Whereas Leu oligomers form a sheet form in the solid state, L-Leu/
Aib block peptides having a proper ratio of the two residues and a
sufficient length promote a helical conformation in solution.9b (b) Isokawa,
S.; Mimura, Y.; Narita, M. Macromolecules 1989, 22, 1280-1284.
(10) Inai, Y.; Oshikawa, T.; Yamashita, M.; Tagawa, K.; Hirabayashi, T.
Biopolymers 2003, 70, 310-322.
(11) See the Supporting Information.
(12) Holtzer, M. E.; Holtzer, A. Biopolymers 1992, 32, 1675-1677.
(13) Sreerama, N.; Woody, R. W. Methods Enzymol. 2004, 383, 318-351.
(14) Stereochemistry of the internal moiety in an artificial backbone was
elegantly demonstrated to promote helix inversion: Dolain, C.; Le´ger,
J.-M.; Delsuc, N.; Gornitzka, H.; Huc, I. Proc. Natl. Acad. Sci. U.S.A.
2005, 102, 16146-16151. For unique “helix reversal”, see also 1d.
(15) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am.
Chem. Soc. 1985, 107, 3902-3909. For the detailed procedure and results,
see also ref 11.
(16) The helical axis of type II slightly bends due to a mixed 310/R-helical
hydrogen bonding pattern.11
(17) For more information of a preference for heterochiral helix, see ref 11.
(18) The molecular graphics were drawn with: Thompson, M. A. ArgusLab
4.0.1; Planaria Software LLC: Seattle, WA, 2004 (http://www.arguslab.com).
Acknowledgment. This work was partially supported by the
project (No. 16550142) of the Ministry of Education, Culture,
Sports, Science, and Technology of Japan.
JA063873N
9
J. AM. CHEM. SOC. VOL. 128, NO. 46, 2006 14737