COMMUNICATIONS
[15] Stereochemical assignments of compounds 11 and 12 were based upon
similarity of spectroscopic data in comparison to compounds 9 and 10,
respectively. See the Supporting Information.
diversity in a quest for superior antifungal agents is apparent
on inspection. Efforts to implement this rearrangement as a
key simplifying transformation in the total synthesis of the
fully elaborated aspirochlorine system will be reported in due
[16] We use the expression b-face migration as referring to establishment
À
of the S C97) bond syn to position C99) of the spiro diketopiperazine
course.
substructure.
[17] J. Hine, Adv. Phys. Org. Chem. 1977, 15, 1; see also: K. B. Carpenter, J.
Am. Chem. Soc. 1985, 107, 5730; R. H. Newman-Evans, R. J. Simon,
B. K. Carpenter, J. Org. Chem. 1990, 55, 695.
Received: July 4, 2000 [Z15385]
[18] A similar stabilizing interaction between a sulfur atom and a carbonyl
group was invoked in Ref. [11b].
[19] The arguments advanced above focus on the migrating sulfur atom
[1] Spirotryprostatin A: S. Edmondson, S. J. Danishefsky, L. Sepp-Lor-
enzino, N. Rosen, J. Am. Chem. Soc. 1999, 121, 2147; himastatin: T. M.
Kamenecka, S. J. Danishefsky, Angew. Chem. 1998, 110, 3166; Angew.
Chem. Int. Ed. 1998, 37, 2995; 5-N-acetylardeemin and amauromine:
K. M. Depew, S. P. Marsden, D. Zatorska, A. Zatorski, W. G.
Bornmann, S. J. Danishefsky, J. Am. Chem. Soc. 1999, 121, 11953;
gypsetin, deoxybrevianamide E, brevianamide E, and tryprostatin:
J. M. Schkeryantz, J. C. G. Woo, P. Siliphaivanh, K. M. Depew, S. J.
Danishefsky, J. Am. Chem. Soc. 1999, 121, 11964; spirotryprostatin B:
F. von Nussbaum, S. J. Danishefsky, Angew. Chem. 2000, 112, 2259;
Angew. Chem. Int. Ed. 2000, 39, 2175.
À
wherein the sense of rotation around the C97) C98) bond accom-
modates the preferred modality of sulfur migration. Alternatively, it
À
could be that a preferred sense to the C C rotation itself serves to
determine the face of the sulfur migration.
[20] We note that the observed rearrangement process is suggestive of a
possible biosynthesis of aspirochlorine.
[2] A. Kato, T. Saeki, S. Suzuki, K. Ando, G. Tamura, J. Antibiot. 1969, 22,
322; D. H. Berg, R. P. Massing, M. M. Hoehn, L. D. Boeck, R. L.
Hamill, J. Antibiot. 1976, 29, 394; K. Sakata, A. Masago, A. Sakurai, N.
Takahashi, Tetrahedron Lett. 1982, 23, 2095; K. Sakata, T. Kuwatsuka,
A. Sakurai, N. Takahashi, G. Tamura, Agric. Biol. Chem. 1983, 47,
2673; K. Sakata, M. Maruyama, J. Uzawa, A. Sakurai, H. S. M. Lu, J.
Clardy, Tetrahedron Lett. 1987, 28, 5607; for structurally related
gliovirin and FA-2097, see: R. D. Stipanovic, C. R. Howell,J. Antibiot.
1982, 35, 1326 9gliovirin); C. Miyamoto, K. Yokose, T. Furumai, H. B.
Maruyama, J. Antibiot. 1982, 35, 376 and K. Yokose, N. Nakayama, C.
Miyamoto, T. Furumai, H. B. Maruyama, R. D. Stipanovic, C. R.
Howell, J. Antibiot. 1984, 37, 6679FA-2097).
Ion-Specific Aggregation in Conjugated
Polymers: Highly Sensitive and Selective
Fluorescent Ion Chemosensors**
Jinsang Kim, D. Tyler McQuade, Sean K. McHugh, and
Timothy M. Swager*
[3] F. Moonti, F. Ripamonti, S. P. Hawser, I. Khalid, J. Antibiot. 1999, 52,
311.
Conjugated polymers are emerging as versatile elements
for the design of chemical sensors.[1, 2] An expansive range of
structures is known, and thus the facile tuning of properties by
modification of the polymer backbone or the introduction of
side groups is possible. A variety of transduction methods that
modify the emission and conductivity of a conjugated polymer
is available, these include photochemically induced electron
transfer, doping, conformational changes, and metal liga-
tion.[1±3] Interchain interactions play a decisive role in
controlling the conductive and emissive properties of con-
jugated polymers in the bulk material.[4] Nevertheless, no
sensory system which directly exploits interchain interactions
in conjugated polymers has been reported. Herein, we report
a new transduction mechanism based on the aggregation of
[4] A. W. Braithwaite, R. D. Eichner, P. Waring, A. Mullbacher, Mol.
Immunol. 1987, 24, 47; P. Waring, R. D. Eichner, A. Mullbacher, Med.
Res. Rev. 1988, 8, 499; R. D. Eichner, P. Waring, A. M. Geue, A. W.
Braithwaite, A. Mullbacher, Med. Res. Rev. 1988, 8, 499.
[5] H. Hiemstra, W. N. Speckamp in Comprehensive Organic Synthesis,
Vol. 2 9Eds: B. M. Trost, I. Fleming), Pergamon, Oxford, 1991,
pp. 1047± 1082; H. De Koning, W. N. Speckamp, Methods Org. Chem.
2Houben-Weyl) 4th ed., 1952 ± , Vol. E21, 1995, p. 1953; W. N.
Speckamp, M. J. Moolenaar, Tetrahedron 2000, 56, 3817.
[6] a) R. M. Williams, G. F. Miknis, Tetrahedron Lett. 1990, 30, 42997;
b) G. F. Miknis, R. M. Williams, J. Am. Chem. Soc. 1993, 115, 536.
[7] For recent examples of sulfanyl migrations, see: L. Djakovitch, J.
Eames, D. J. Fox, F. H. Sansbury, S. Warren, J. Chem. Soc. Perkin
Trans. 1 1999, 2771; J. Eames, S. Warren, J. Chem. Soc. Perkin Trans. 1
1999, 2783; J. Eames, D. J. Fox, M. A. D. L. Haras, S. Warren, J. Chem.
Soc. Perkin Trans. 1 2000, 1903; and references therein.
[8] At this stage we leave unspecified the nature of the R---R insert in
structures A ± C. The sulfur groups may be separated, directly
connected, or connected through a linker.
[*] Prof. T. M. Swager
[9] It is recognized that the species produced from protonation of the
ketonic oxygen of quinomethide B formally converges with the
product of A upon acid-induced heterolysis of OL.
[10] For the preparation of 3, see Ref. [11a], and references therein.
[11] a) Y. Kishi, T. Fukuyama, S. Natatsuka, J. Am. Chem. Soc. 1973, 95,
6490; b) T. Fukuyama, S. Natatsuka, Y. Kishi, Tetrahedron 1981, 37,
2045.
[12] Refs. [11a] and [11b] include the addition of nucleophiles derived
from 3 to primary halides and acid chlorides.
[13] Several preparations of 6 exist; see, for example, Ref. [6b], and
references therein.
[14] All new compounds display satisfactory spectroscopic and analytical
data consistent with the assigned structures. Crystallographic data
9excluding structure factors) for compound 9 reported in this paper
have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication no. CCDC-147018. Copies of the
data can be obtained free of charge on application to CCDC, 12 Union
Road, Cambridge CB21EZ, UK 9fax: 944)1223-336-033; e-mail:
deposit@ccdc.cam.ac.uk).
Department of Chemistry and Center for Materials Science and
Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139 9USA)
Fax : 91)617-253-7929
J. Kim
Department of Materials Science and Engineering
Department of Chemistry and Center for Materials Science and
Engineering
Dr. D. T. McQuade, S. K. McHugh
Department of Chemistry
[**] The authors thank the Office of Naval Research, the Defense
Advanced Research Projects Agency, and the Draper Laboratory
for generous financial support. D.T.M. thanks the National Institute of
Health for a post-doctoral fellowship through NIGMS.
Supporting information for this article is available on the WWW under
3868
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3921-3868 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 21