been applied successfully to elaborate 2-alkoxy, 2-fluoro, and
2-deoxysaccharides, as well as higher sugars, this process
has yet to encompass fully 2-amino and 2-acetamido sugars.5
Keck-type allylations (using allyl tributylstannane) have been
described,6 but this method provides only the C-allyl variant.
Czernecki5k and Sinay¨5p have shown that anomeric selenides
do provide radicals, but these have only been trapped in
intramolecular processes.
1-(Phenylselenyl)-2-azido-2-deoxy-R-D-galactose (4) pro-
vides an attractive starting point and is readily available via
azide radical addition to D-galactal, as described by both
Czernecki9 and Santoyo-Gonza´lez10 (Scheme 1). Selenide 4
Scheme 1a
More recently, Fessner7 has captured the radical derived
from 1-bromo-N-(trifluoroacetyl)-R-D-glucosamine with vinyl
phosphonates to give the corresponding C-glycosides.
While anomeric halides (see above) are generally a
valuable source of anomeric radicals, there are limitations
associated with using glycosyl bromides of 2-amino sugars.8
For this reason, we have examined alternative radical
precursors with the additional aim of providing access to a
broad range of other 2-amino C-glycosyl derivatives, and
our initial results, which focus on the galacto series, are
described in this paper.
a Reagents and conditions: (a) PhI(OAc)2, NaN3, PhSeSePh
(82%); (b) 5a: MeCOSH (95%); 5b: Et3N, HS(CH2)3SH, then
(F3CCO)2O (75%); 5c: Et3N, HS(CH2)3SH, then Boc2O (80%).
is readily handled, and homolytic C-Se bond cleavage is a
well established and efficient method for radical genera-
tion.5k,p,11 Further, the primary amine (arising from azide
reduction) is easily converted to the N-acetyl derivative 5a,
as well as the N-trifluoroacetyl and N-Boc variants 5b and
5c, respectively, all of which exhibit good stability.
Using “standard” as well as a series of modified conditions
for radical generation, reaction of 5a in the presence of either
methyl acrylate or styrene failed to give any C-glycoside.12
C-Se cleavage occurred, but only reduction product 6a was
observed, which was generally obtained in quantitative yield.
The key to the successful trapping of an anomeric radical
derived from 5 (other than by reduction) involves use of Et3B
as initiator at room temperature. Under these conditions, we
were able to generate the desired radical and capture this
species with a series of activated alkenes to give the
corresponding R-C-glycosides 7 in 17-93% yield (Scheme
2 and Table 1).
(4) Postema, M. H. D. Tetrahedron 1992, 48, 8545-8599. Levy, D. E.;
Tang, C. The Chemistry of C-Glycosides; Elsevier Science Publishers:
Amsterdam, 1995. Postema, M. H. D. C-Glycoside Synthesis; CRC Press:
USA, 1995. Togo, H.; He, W.; Waki, Y.; Yokoyama, M. Synlett 1998, 700-
717.
(5) For other synthetic approaches to C-glycosides of 2-amino sugars,
see (a) Nicotra, F.; Russo, G.; Ronchetti, F.; Toma, L. Carbohydr. Res.
1983, 124, C5-C7. (b) Hoffmann, M. G.; Schmidt, R. R. Liebigs Ann.
Chem. 1985, 2403-2419. (c) Giannis, A.; Mu¨nster, P.; Sandhoff, K.;
Steglich, W. Tetrahedron 1988, 44, 7177-7180. (d) Carcano, M.; Nicotra,
F.; Panza, L.; Russo, G. J. Chem. Soc., Chem. Commun. 1989, 297-298.
(e) Abel, S.; Linker, T.; Giese, B. Synlett 1991, 171-172. (f) Grondin, R.;
Leblanc, Y.; Hoogsteen, K. Tetrahedron Lett. 1991, 32, 5021-5024. (g)
Bertozzi, C. R.; Bednarski, M. D. Tetrahedron Lett. 1992, 33, 3109-3112.
(h) Kim, K. I.; Hollingsworth, R. I. Tetrahedron Lett. 1994, 35, 1031-
1032. (i) Leteux, C.; Veyrie`res, A. J. Chem. Soc., Perkin Trans. 1 1994,
2647-2655. (j) Ayadi, E.; Czernecki, S.; Xie, J. A. J. Chem. Soc., Chem.
Commun. 1996, 347-348. (k) Czernecki, S.; Ayadi, E.; Xie, J. Tetrahedron
Lett. 1996, 37, 9193-9194. (l) Petrusˇova´, M.; BeMiller, J. N.; Petrusˇ, L.
Tetrahedron Lett. 1996, 37, 2341-2344. (m) Roe, B. A.; Boojamra, C. G.;
Griggs, J. L.; Bertozzi, C. R. J. Org. Chem. 1996, 61, 6442-6445. (n)
Wang, L. X.; Fan, J. Q.; Lee, Y. C. Tetrahedron Lett. 1996, 37, 1975-
1978. (o) Cipolla, L.; Lay, L.; Nicotra, F. J. Org. Chem. 1997, 62, 6678-
6681. (p) Rubinstenn, G.; Esnault, J.; Mallet, J. M.; Sinay¨, P. Tetrahedron:
Asymmetry 1997, 8, 1327-1336. (q) Cui, J. R.; Horton, D. Carbohydr.
Res. 1998, 309, 319-330. (r) Urban, D.; Skrydstrup, T.; Beau, J. M. J.
Org. Chem. 1998, 63, 2507-2516. (s) Urban, D.; Skrydstrup, T.; Beau, J.
M. Chem. Commun. 1998, 955-956. (t) Westermann, B.; Walter, A.;
Diedrichs, N. Angew. Chem., Int. Ed. 1999, 38, 3384-3386. (u) Cipolla,
L.; La Ferla, B.; Lay, L.; Peri, F.; Nicotra, F. Tetrahedron: Asymmetry
2000, 11, 295-303. (v) Vidal, T.; Haudrechy, A.; Langlois, Y. Tetrahedron
Lett. 1999, 40, 5677-5680. (w) Dondoni, A.; Mariotti, G.; Marra, A.
Tetrahedron Lett. 2000, 41, 3483-3487.
Scheme 2a
(6) Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104, 5829-5831.
Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. Tetrahedron 1985,
41, 4079-4094. For carbohydrate-based applications of this methodology,
see: Giese, B.; Linker, T.; Muhn, R. Tetrahedron 1989, 45, 935-940.
Paulsen, H.; Matschulat, P. Liebigs Ann. Chem. 1991, 487-495. Waglund,
T.; Claesson, A. Acta Chem. Scand. 1992, 46, 73-76. See also ref 5m.
(7) Junker, H. D.; Fessner, W. D. Tetrahedron Lett. 1998, 39, 269-
272. Junker, H. D.; Phung, N.; Fessner, W. D. Tetrahedron Lett. 1999, 40,
7063-7066.
a Reagents and conditions: (a) see footnote 12; (b) Et3B,
n-Bu3SnH, PhMe, hυ, ultrasound, rt.
(8) Horton5q has reported the successful Keck-type allylation process
using anomeric chlorides and xanthates of 2-amido sugars. Attempts to use
2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-R-D-glycopyranosyl bromide as a
radical precursor led only to the corresponding oxazoline. N-Trifluoroacetyl
derivatives, as used by Fessner,7 are less prone to oxazoline formation.
(9) Czernecki, S.; Randriamandimby, D. Tetrahedron Lett. 1993, 34,
7915-7916. Czernecki, S.; Ayadi, E.; Randriamandimby, D. J. Org. Chem.
1994, 59, 8256-8260.
Importantly, the R-anomer 7 was observed, and the
corresponding â-isomer has not been detected. We have
found that a combination of irradiation (200 or 400 W) and
use of an ultrasonic bath also improved yields and reaction
times. Reduction of the intermediate radical resulting in 6a-c
does still compete and remains the principle side reaction
observed.
(10) Santoyo-Gonza´lez, F.; Calvo-Flores, F. G.; Garc´ıa-Mendoza, P.;
Herna´ndez-Mateo, F.; Isac-Garc´ıa, J.; Robles-D´ıaz, R. J. Org. Chem. 1993,
58, 6122-6125. See also: Giuliano, R. M.; Davis, R. S.; Boyko, W. J. J.
Carbohyd. Chem. 1994, 13, 1135-1143.
4052
Org. Lett., Vol. 2, No. 25, 2000