We thank Dr Alan Kenwright, Ian McKeag and Catherine
Heffernan for VT NMR studies and Dr P. G. Steel for helpful
discussions and the generous donation of materials.
Notes and references
§ All new compounds were fully characterised. Selected data for 1: mp
218.2–220.6 °C (decomp.) (EtOH); dH(300 MHz, CDCl3) 8.38 (2H, dd, J
8.1, 1.2, 2 3 H6), 7.91 (2H, ddd, J 8.1, 7.2, 1.5, 2 3 H7), 7.81 (2H, dd, J
7.5, 1.5, 2 3 H9), 7.63 (2H, ddd, J 8.1, 7.5, 1.2, 2 3 H8), 4.08, 4.02 (4H,
2 3 d, J 13.5, 2,2A-CH2), 2.01 (br, NH). For 2: mp 228.6 °C (EtOAc);
dH(300 MHz, CDCl3) 8.31 (2H, ddd, J 8.1, 1.5, 0.6, 2 3 H6), 7.93 (4H, m,
2 3 H7 + H8), 7.60 (2H, ddd, J 6.9, 1.5, 1.2, 2 3 H9), 4.43 (2H, d, J 12.0,
2 3 H2A), 4.32 (H, d, J 12.0, 2 3 H2B).
Scheme 3 Reagents and conditions: i, (+)-CSA (2 equiv.), PhH (3.8 ml
mol21), reflux, 40 h; ii, HBr, EtOH–H2O or CoSO4, EtOH–H2O.
¯
¶ Crystal data for 6: C18H15N5O3, M = 349.35, triclinic, Space group P1,
m = 0.101 mm21, R1 = 0.2872, wR2 = 0.1412, a = 4.684(4), b =
13.470(5), c
88.302(10)°, V = 816.6(8) Å3, T = 293(2) K, Z = 2, reflections collected/
unique 2307/2201 [R(int) 0.0696]. CCDC 182/1375. See
= 13.786(6) Å, a = 73.144(10), b = 78.90(2), g =
reagent indicated that the material was enantiopure ( > 98%
ee).
=
The use of a paucity of a ‘poor’ solvent is essential; a solution
of 1 with 2 equiv. of CSA (1,2-dichloroethane) at 83 °C (vs. 80
°C for benzene) for 40 h gave only the racemic material and, on
prolonged heating (72 h), decomposition. Two samples of 1 (0.1
mmol) plus 2 equiv. of CSA heated at reflux for 16 h in 10 ml
(entirely dissolved) and 1 ml (two phase) of benzene gave
diastereoisomer ratios 1+1 and 3+1, respectively. The use of
higher temperatures was detrimental: 2 h at 135 °C led to
complete decomposition. These data are indicative of a
crystallisation induced AT [see ref. 1(c) for a full explanation of
the principles involved] rather than the formation of a
thermodynamically favourable salt. The racemisation process
would appear to be acid catalysed: a solution of (2)-1 and CSA
showed appreciable racemisation (diastereoisomer ratio 4+1)
after 1 week at room temperature, whereas a solution of the free
base showed minimal racemisation after 14 days, and the rate of
racemisation of 1 even at 110 °C was slow (t1/2 > 24 h at 110
°C). The crystalline material retained its original ee during the
same period. It is unlikely that protonation of the secondary
amine will assist rotation around the N–N bond, thus it is
proposed that protonation of the quinazolinone 1-(imine)
nitrogens (hence the requirement for CSA, a strong acid) and the
resultant amidinium ion resonance to N-3 reduces the barrier to
rotation around the N–N bond. Attempts to grow crystals
containing heavy atoms suitable for the determination of
absolute configuration with HBr or aqueous CoSO4 led not to
the respective salt/complex but to the rearranged hydrolysis
product 6 (Scheme 3) as determined by single crystal diffrac-
tion.¶ This facile hydrolysis is atypical of biquinazolinones.
format.
1 (a) Asymmetric Transformation refers to ‘an asymmetric transformation
of the second knd’, R. Kuhn, Chem. Ber., 1932, 65, 49; (b) For a recent
review of controlled racemisation and asymmetric transformation, see
E. J. Ebbers, G. J. A. Ariaans, J. P. M. Houbiers, A. Bruggink and B.
Zwannenburg, Tetrahedron, 1997, 53, 9417; (c) For a recent paper on
asymmetric transformation, the introduction of which sets out the
principles and correct terminology, see N. A. Hassan, E. Bayer and J. C.
Jochims, J. Chem. Soc., Perkin Trans. 1, 1998, 3747; (d) For rare cases
of the application of asymmetric transformation to chiral allenes, see M.
Node, K. Nishide, J. Fujiwara and S. Ichihashi, Chem. Commun., 1998,
2363; Y. Naruse, H. Watanabe, Y. Ishiyama and T. Yoshida, J. Org.
Chem., 1997, 62, 3862.
2 (a) See J. Clayden, Angew. Chem., Int. Ed. Engl., 1997, 36, 949 and
references therein; (b) See e.g. S. Vyskocil, M. Smrcina and P. Kocovsky,
Tetrahedron Lett., 1998, 39, 9289; G. Chelucci, A. Bacchi, D. Fabbri, A.
Saba and F. Ulgheri, Tetrahedron Lett., 1998, 40, 553.
3 S. M. Verma and R. Prasad, J. Org. Chem., 1973, 38, 1004.
4 R. S. Atkinson, E. Barker, P. J. Edwards and G. A. Thompson, J. Chem.
Soc., Perkin Trans. 1, 1996, 1047; R. S. Atkinson, E. Barker, C. J. Price
and D. R. Russell, J. Chem. Soc., Chem. Commun., 1994, 1159.
5 P. S. N. Reddy and A. K. Bhavani, Indian J. Chem., Sect. B, 1992, 31,
740.
6 (a) E. Vedejs, S. C. Fields, R. Hayashi, S. R. Hitchcock, D. R. Powell and
M. R. Schrimpf, J. Am. Chem. Soc., 1999, 121, 2460; (b) E. Vedejs and
Y. Donde, J. Am. Chem. Soc., 1997, 119, 9293.
7 S. C. Benson, P. Cai, M. Colon, M. A. Haiza, M. Tokles and J. K. Snyder,
J. Org. Chem., 1988, 53, 5335.
Communication 9/05018C
1992
Chem. Commun., 1999, 1991–1992