cycloisomerization (McDonald reaction) of alkynol 7. The
preparation of the selectively functionalized 7 would be based
on the diastereoselective addition (Marshall reaction)11,12 of
a (P)-allenyl stannane to an (S)-lactic aldehyde.
The resulting scheme involves the sequential application
of three recently developed reactions, each of which ac-
complishes a previously difficult or impossible transforma-
tion. Implementation of the plan was remarkably facile.
Figure 1. L-Vancosamine (1), N,N-dimethyl-L-vancosamine (2),
silyl-protected N,N-dimethyl-L-vancosamine glycal 3, and protected
L-vancosamine glycal 4.
Scheme 2. Stereoselectivity of the Marshall Reaction
cycloisomerization reaction.9 Although both efficient and
stereoselective, this synthesis did not appear to us to be
readily adaptable to the preparation of chiral glycal deriva-
tives.
In this letter we present a novel strategy for the synthesis
of oxazolidinone 5, which we view as a universal precursor
to vancosamine derivatives. Furthermore, we describe the
conversion of this key compound to the protected N,N-
dimethyl-L-vancosamine glycal 3, intended for use in our
approach to the synthesis of pluramycin antibiotics.
In our retrosynthetic analysis (Scheme 1), we envisaged
oxazolidinone 5 to be available from the stereospecific C-H
Alkynol 10 was obtained by the addition of (P)-allenyl
stannane 813 to (S)-lactic aldehyde benzyl ether 914 according
to the method of Marshall.11 Purification by filtration through
KF-loaded Celite, a procedure described by Roush et al.,15
followed by flash column chromatography provided the
major product, alkynol 10, and a small amount of the
diastereomeric alkynol 11.16 Protecting group modification
was required prior to the cycloisomerization reaction.
Therefore, alkynol 10 was functionalized as the carbamate
12 by treatment with trichloroacetyl isocyanate followed by
methanolysis.17 Then the benzyl group was removed with
DDQ to afford alkynol 7, the substrate for the McDonald
reaction. Irradiation of a solution of alkynol 7 at 350 nm
was carried out in the presence of 10 mol % of W(CO)6 and
excess triethylamine. After low-temperature workup (see
Supporting Information), crystalline glycal 6 was obtained
in 87% yield.
Scheme 1. Oxazolidinone 5, and Its Retrosynthetic Analysis
(8) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 3471.
(9) McDonald, F. E.; Reddy, K. S.; Diaz, Y. J. Am. Chem. Soc. 2000,
122, 4304.
(10) Espino, C. G.; Du Bois, J. Angew. Chem., Int. Ed. 2001, 40, 598.
(11) (a) Marshall, J. A.; Wang. X. J. J. Org. Chem. 1991, 56, 3211. (b)
Marshall, J. A.; Wang. X. J. J. Org. Chem. 1992, 57, 1242.
(12) For a review of this and related stereoselective addition reactions,
see: Marshall, J. A. Chem. ReV. 1996, 96, 31.
(13) Prepared from commercially available (R)-(+)-3-butyn-2-ol in two
steps by the reported procedure: (a) Marshall, J. A.; Lu, Z.-H.; Johns, B.
A. J. Org. Chem. 1998, 63, 817. (b) Marshall, J. A.; Grant, C. M. J. Org.
Chem. 1999, 64, 8214.
bond insertion reaction (Du Bois reaction)10 of the 3-methyl
3-deoxy glycal 6, which would be accessed through the
(7) Synthesis of vancosamine or its derivatives: (a) Thang, T. T.;
Winternitz, F.; Olesker, A.; Lagrange, A.; Lukacs, G. J. Chem. Soc., Chem.
Commun. 1979, 153. (b) Dyong, I.; Friege, H. Chem. Ber. 1979, 112, 3273.
(c) Thang, T. T.; Winternitz, F.; Olesker, A.; Lagrange, A.; Lukacs, G.
Tetrahedron Lett. 1980, 21, 4495. (d) Ahmad, H. I.; Brimacombe, J. S.;
Mengech, A. S.; Tucker, L. C. N. Carbohydr. Res. 1981, 93, 288. (e) Dyong,
I.; Friege, H.; Luftmann, H.; Merten, H. Chem. Ber. 1981, 114, 2669. (f)
Fronza, G.; Fuganti, C.; Grasselli, P.; Pedrocchi-Fantoni, G. Tetrahedron
Lett. 1981, 22, 5073. (g) Brimacombe, J. S.; Mengech, A. S.; Rahman, K.
M. M.; Tucker, L. C. N. Carbohydr. Res. 1982, 110, 207. (h) Fronza, G.;
Fuganti, C.; Grasselli, P.; Pedrocchi-Fantoni, G. J. Carbohydr. Chem. 1983,
2, 225. (i) Hamada, Y.; Kawai, A.; Shioiri, T. Tetrahedron Lett. 1984, 25,
5413. (j) Hauser, F. M.; Ellenberger, S. R. J. Org. Chem. 1986, 51, 50. (k)
Dyong, I.; Weigand, J.; Thiem, J. Liebigs Ann. Chem. 1986, 577. (l) Klemer,
A.; Wilbers, H. Liebigs Ann. Chem. 1987, 815. (m) Hamada, Y.; Kawai,
A.; Matsui, T.; Hara, O.; Shioiri, T. Tetrahedron 1990, 46, 4823. (n) Greven,
R.; Ju¨tten, P.; Scharf, H.-D. Carbohydr. Res. 1995, 275, 83. (o) Nicolaou,
K. C.; Mitchell, H. J.; van Delft, F. L.; Ru¨bsam, F.; Rodriguez, R. M. Angew.
Chem., Int. Ed. 1998, 37, 1871. (p) Nicolaou, K. C.; Mitchell, J. J.; Jain,
N. F.; Bando, T.; Hughes, R.; Winssinger, N.; Natarajan, S.; Koumbis, A.
E. Chem. Eur. J. 1999, 5, 2648. (q) Nicolaou, K. C.; Baran, P. S.; Zhong,
Y.-L.; Vega, J. A. Angew. Chem., Int. Ed. 2000, 39, 2525. (r) Smith, G. R.;
Giuliano, R. M. Carbohydr. Res. 2000, 323, 208. (s) Cutchins, W. W.;
McDonald, F. E. Org. Lett. 2002, 4, 749.
(14) Prepared in two steps from ethyl (S)-(-)-lactate. O-Benzylation
according to Vaelis and Johnson14a gave ethyl (S)-2-(benzyloxy)propionate
([R]22D -87.0 in CHCl3, c 2.54) with enantiomeric purity >99%, determined
by 1H NMR study with chiral shift reagent, Eu(hfc)3. DIBAL reduction by
the procedure of Solladie´-Cavallo and Bonne14b provided aldehyde 9 ([R]22
D
-61.2 in CHCl3, c 6.68): (a) Varelis, P.; Johnson, B. L. Aust. J. Chem.
1995, 48, 1775. (b) Solladie´-Cavallo, A.; Bonne, F. Tetrahedron: Asymmetry
1996, 7, 171.
(15) Scheidt, K. A.; Bannister, T. D.; Tasaka, A.; Wendt, M. D.; Savall,
B. M.; Fegley, G. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 6981.
1
(16) Alkynol 11 was identified by its H NMR spectrum: Marshall, J.
A.; Chobanian, H. R. J. Org. Chem. 2000, 65, 8357. The reported
enantiomeric excess of commercially available (R)-(+)-3-butyn-2-ol (Aldrich
Chemical Company) was greater than 95%; therefore, a small amount of
the (M)-isomer of the allenyl stannane was presumably involved in the
reaction.
(17) Kocovsky, P. Tetrahedron Lett. 1986, 27, 5521.
3892
Org. Lett., Vol. 5, No. 21, 2003