8562
the FL part mainly absorbs, show a significant difference compared with those of 2, 5 and 6.
Whereas with 2, 5 and 6 a strong emission could be observed, the emissions of 7 and 8 are very
weak, showing rapid quenching of the excited singlet state of FL by C60. Besides, the emissions
of 7 and 8 (480–650 nm) were observed only from the FL, without detectable emission from the
C60 (680–750 nm), while the emission from C60 in model 9 was observed (680–750 nm). This
1
shows there is no evidence for the existence of singlet-singlet energy transfer from FL* to the
C60. These results imply that intramolecular photoinduced electron transfer from the FL to C60
is a main pathway for the emission quenching in chloroform. The detailed photophysical
properties of the two dyads, such as their fluorescence lifetimes and the rates of formation and
lifetime of charge separation state are under investigation.
Acknowledgements
The authors thank the CAS for the financial support (KJ-951-A1-50103).
References
1. Fox, M. A.; Chanon, M. Photoinduced Electron Transfer; Elsevier: Amsterdam, 1988.
2. Mart´ın, N.; Sa´nchez, L.; Illescas, B.; Pe´rez, I. Chem. Rev. 1998, 98, 2527–2547.
3. Hiroshi, I.; Yoshiteru, S. Eur. J. Org. Chem. 1999, 2445–2457.
4. Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore, T.
A.; Gust, D. J. Am. Chem. Soc. 1999, 121, 8604–8614.
5. Wedel, M.; Montforts, F.-P. Tetrahedron Lett. 1999, 40, 7071–7074.
6. Koji, Y.; Hiroshi, I.; Yoshinobu, N.; Iwao, Y.; Yoshiteru, S. Chem. Lett. 1999, 895–896.
7. Manoru, F.; Osamu, I.; Hiroshi, I.; Koji, Y.; Hiroko, Y.; Yoshiteru, S. Chem. Lett. 1999, 721–722.
8. Cheng, P.; Wilson, S. R.; Schuster, D. I. Chem. Commun. 1999, 89–90.
9. Koichi, T.; Hiroshi, I.; Yoshinobu, N.; Iwao, Y.; Yoshiteru, S. Chem. Commun. 1999, 625–626.
10. Tkachenka, N. V.; Rantala, L.; Tauber, A. Y.; Helaja, J.; Hynninen, P. H.; Lemmetyinen, H. J. Am. Chem. Soc.
1999, 121, 9378–9387.
11. Mart´ın, N.; Sa´nchez, L.; Seoane, C.; Andreu, R.; Gar´ın, I.; Orduna, J. Tetrahedron Lett. 1996, 37, 5979.
12. Simonsen, K. B.; Konovalov, V. V.; Konovalova, T. A.; Kawai, T.; Cava, M. P.; Kispert, L. D.; Metzger, R. M.;
Becher, J. J. Chem. Soc., Perkin Trans. 2 1999, 657–665.
13. Maggini, M.; Dono, A.; Scorrano, G.; Prato, M. J. Chem. Soc., Chem. Commun. 1995, 845.
14. Williams, R. M.; Zwier, J. M.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 4093.
15. Guldi, D. M.; Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1997, 119, 974–980.
16. Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D. J.
Am. Chem. Soc. 1997, 119, 1400–1405.
17. Neckers, C. D.; Oscar, M. V.-A. Adv. Photochem. 1995, 18, 315.
18. Zhang, H.; Zhang, M.; Shen, T. Sci. China (Ser. B) 1997, 40 (5), 449–456.
19. Spectroscopic data for 7: 1H NMR (300 MHz, CDCl3): l 8.28 (1H, d), 7.76–7.68 (4H, m), 7.25 (1H, d), 7.20–6.92
(5H, m), 6.90–6.65 (3H, m), 5.04–5.01 (2H, d, unresolved, 1H of CHAH 1H of CH in pyrrolidine), 4.47–4.25
+
(5H, m, 1H of CHAHB in pyrrolidine+OCH2CH2O), 3.98 (2H, m, ꢀCOOBCH2ꢀ), 2.84 (3H, s, ꢀNCH3), 1.38–1.28
(2H, m, ꢀCH2CH2CH2CH3), 1.13–1.03 (2H, m, ꢀCH2CH2CH2CH3), 0.81–0.76 (3H, t, ꢀ(CH2)3CH3). 13C NMR
(300 MHz, CDCl3): l 165.2, 163.7, 158.8, 158.2, 154.6, 147.1, 146.1, 146.0, 145.9, 145.7, 145.3, 145.2, 145.1, 145.0,
144.9, 144.5, 144.2, 144.1, 142.9, 142.5, 142.4, 142.0, 141.8, 141.7, 141.5, 141.3, 139.9, 139.7, 139.6, 139.3, 136.7,
136.4, 135.7, 135.5, 133.7, 133.6, 132.5, 131.3, 131.2, 131.0, 130.9, 130.8, 130.4, 130.1, 129.7, 129.3, 129.2, 128.9,
128.8, 128.7, 128.6, 128.4, 128.0, 127.5, 117.5, 115.2, 114.6, 105.3, 100.6, 82.8, 77.5, 76.4, 69.5, 68.6, 67.4, 65.4,
39.8, 30.0, 18.9, 13.4; FT-IR w/cm−1, 2953, 1720, 1642, 1597, 1510, 1448, 1377, 1285, 1247, 1206, 1105, 853, 758,