together and a cross-metathesis to introduce the highly pharmaco-
phoric chiral b-methoxy acrylate fragment. This straightforward
and particularly flexible approach provides expedient access to
the cysto- and melithiazole families as well as a variety of
synthetic analogues thereof.
This work was supported by the Ministere de l’Education
Nationale, de l’Enseignement Superieur et de la Recherche and
by the Centre National de la Recherche Scientifique (CNRS).
Notes and references
1 (a) K. J. Weissman and R. Muller, Bioorg. Med. Chem., 2009,
17, 2121; (b) K. J. Weissman and R. Muller, Nat. Prod. Rep., 2010,
27, 1276.
2 (a) K. Gerth, H. Irschik, W. Trowitzsch and H. Reichenbach,
J. Antibiot., 1980, 33, 1474; (b) W. Trowitzsch, G. Hofle and
W. S. Sheldrick, Tetrahedron Lett., 1981, 22, 3829.
3 P. L. Toogood, Curr. Opin. Chem. Biol., 2008, 12, 457.
4 (a) J.-W. Ahn, S.-H. Woo, C.-O. Lee, K.-Y. Cho and B.-S. Kim,
J. Nat. Prod., 1999, 62, 495; (b) H. Steinmetz, E. Forche,
H. Reichenbach and G. Hofle, Tetrahedron, 2000, 56, 1681.
5 (a) M. Ojika, Y. Suzuki, A. Tsukamoto, Y. Sakagami, R. Fudou,
T. Yoshimura and S. Yamanaka, J. Nat. Prod., 1998, 51, 275;
(b) Y. Suzuki, M. Ojika, Y. Sakagami, R. Fudou and S. Yamanaka,
Tetrahedron, 1998, 54, 11399; (c) F. Sasse, B. Bohlendorf, M. Hermann,
B. Kunze, E. Forche, H. Steinmetz, G. Hofle and H. Reichenbach,
J. Nat. Prod., 1999, 52, 721; (d) H. Akita, T. Sasaki, K. Kato, Y. Suzuki,
K. Kondo, Y. Sakagami, M. Ojika, R. Fudou and S. Yamanaka,
Tetrahedron, 2004, 60, 4735; (e) B. Bohlendorf, M. Herrmann,
H.-J. Hecht, F. Sasse, E. Forche, B. Kunze, H. Reichenbach and
G. Hofle, Eur. J. Org. Chem., 1999, 2601.
Scheme 4 Total synthesis of melithiazole G, 3, and cystothiazole F, 4.
were prepared starting from a-chloro aldehyde 15, which was
first reduced to the corresponding a-chlorohydrin (NaBH4,
MeOH) and acetylated under the exact same conditions
as previously described (Scheme 3). The resulting a-chloro
acetate 19 was then treated with SmI2 to afford olefin 20,
which was used as a common intermediate in the synthesis of
both natural products (Scheme 4). Hence, the double bond
was either reduced under a hydrogen atmosphere (PtO2,
MeOH, rt) to afford the saturated product 21 quantitatively
or converted to the corresponding silyl ether 22 via ozonolysis,
reduction and subsequent protection of the resulting primary
alcohol (64% overall yield). Both 4-bromo thiazole derivatives
21 and 22 were then stannylated [(SnMe3)2, Pd(PPh3)4, toluene,
110 1C] and engaged in the key Stille coupling with the
bromothiazole intermediate 10 [Pd(PPh3)4, toluene, 110 1C]19
to afford melithiazole G, 3, and, after TBAF-mediated depro-
tection of the primary alcohol, cystothiazole F, 4, in 51% and
63% yield respectively. Once again, the spectroscopic and
physical data of 3 and 4 were consistent with those reported
in the literature {(14S)-melithiazole G, 3: [a]2D0 + 106.6 (c 1.3,
CHCl3); ref. 7b [a]2D5 + 100.0 (c 0.9, CHCl3), (14S)-cystothiazole
F, 4: [a]2D0 + 89.8 (c 0.85, CHCl3); ref. 7c [a]2D5 + 86.2 (c 1.05,
CHCl3)}.
6 J.-W. Ahn, K. H. Jang, H.-C. Yang, K.-B. Oh, H.-S. Lee and
J. Shin, Chem. Pharm. Bull., 2007, 55, 477.
7 (a) J. M. Clough, H. Dube, B. J. Martin, G. Pattenden,
K. S. Reddy and I. R. Waldron, Org. Biomol. Chem., 2006,
4, 2906; (b) H. Takayama, K. Kato, M. Kimura and H. Akita,
Heterocycles, 2007, 71, 1203; (c) H. Akita, Y. Iwaki, K. Kato, J. Qi
and M. Ojika, Tetrahedron: Asymmetry, 2007, 18, 513.
8 J. Gebauer, S. Arseniyadis and J. Cossy, Org. Lett., 2007, 9,
3425.
9 J. Gebauer, S. Arseniyadis and J. Cossy, Eur. J. Org. Chem., 2008,
2701.
10 T. J. Hoffman, J. Dash, J. H. Rigby, S. Arseniyadis and J. Cossy,
Org. Lett., 2009, 11, 2756.
11 K. C. Nicolaou, W. E. Brenzovich, P. G. Bulger and T. M. Francis,
Org. Biomol. Chem., 2006, 4, 2119.
12 J. Shao and J. S. Panek, Org. Lett., 2004, 6, 3083.
13 Purchased from the Synthonix Corporation.
14 (a) T. J. Hoffman, J. H. Rigby, S. Arseniyadis and J. Cossy, J. Org.
Chem., 2008, 73, 2400; (b) J. Dash, S. Arseniyadis and J. Cossy,
Adv. Synth. Catal., 2007, 349, 152; (c) J. Dash, B. Melillo,
S. Arseniyadis and J. Cossy, Tetrahedron Lett., 2011, 52,
2246. For recent reviews on microwave-assisted CM, see:
(d) J. Rodriguez and Y. Coquerel, Eur. J. Org. Chem., 2008, 1125.
15 T. Bach and S. Heuser, J. Org. Chem., 2002, 67, 5789.
16 (a) D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4122;
(b) R. K. Boeckman, Jr., P. Shao and J. J. Mullins, Org. Synth.,
2004, 10, 696.
17 (a) N. Halland, A. Braunton, S. Bachmann, M. Marigo and K. A.
Jørgensen, J. Am. Chem. Soc., 2004, 126, 4790; (b) M. P. Brochu,
S. Brown and D. W. C. MacMillan, J. Am. Chem. Soc., 2004, 126, 4108.
18 J. M. Chong and S. B. Park, J. Org. Chem., 1993, 58, 523.
19 For related cross-coupling reactions employed in previous
cystothiazole syntheses, see: T. Bach and S. Heuser, Chem.–Eur. J.,
2002, 8, 5585.
In summary, we have described a stereoselective and
protecting group-free total synthesis of the myxobacterial
antibiotic myxothiazole Z, 2, and two of its side-chain analogues
(14S)-melithiazole G, 3, and (14S)-cystothiazole F, 4, using a
common strategy which features an asymmetric organocatalytic
transfer hydrogenation to control the configuration of the C14
stereogenic center, a Stille coupling to link the two thiazole units
c
10510 Chem. Commun., 2012, 48, 10508–10510
This journal is The Royal Society of Chemistry 2012