Dearomatizing nucleophilic addition to naphthalene rings
is well-known, both for naphthalene itself19 and for naph-
thalenes substituted by electron-withdrawing groups.20 Com-
pounds in the naphthyloxazoline series have been extensively
employed as starting materials for the synthesis of a range
of carbocyclic synthetic targets,21 and our discovery of the
dearomatizing cyclization of lithiated amides was based upon
an observation in the naphthamide series.9,22 Dearomatizing
nucleophilic addition to benzene rings has also been known
for some time23 but usually requires activation by metals or
by substituents which are themselves susceptible to nucleo-
philic attack, limiting the versatility of the method. Nonethe-
less, the synthesis of carbocyclic and heterocyclic rings by
the dearomatization of aromatic precursors allows the re-
giocontrol available with aromatic compounds to be exploited
in the synthesis of saturated and partially saturated targets.24
Stereocontrolled dearomatization is all the more powerful,
and the reaction we report here adds to the number of
methods are available for the stereoselective conversion of
benzenoid25 and heterocyclic26 aromatic compounds to
versatile, partially saturated, synthetic intermediates.
(20) Plunian, B.; Mortier, J.; Vaultier, M.; Toupet, L. J. Org. Chem.
1996, 61, 5206. Tomioka, K.; Shindo, M.; Koga, K. Tetrahedron Lett. 1990,
31, 1739. Meyers, A. I.; Roth, G. P.; Hoyer, D.; Barner, B. A.; Laucher, D.
J. Am. Chem. Soc. 1988, 110, 4611. Meyers, A. I.; Brown, J. D.; Laucher,
D. Tetrahedron Lett. 1987, 28, 5283. Shindo, M.; Koga, K.; Asano, Y.;
Tomioka, K. Tetrahedron 1999, 55, 4955. Shindo, M.; Koga, K.; Tomioka,
K. J. Org. Chem. 1998, 63, 9351. Clayden, J.; Frampton, C. S.; McCarthy,
C.; Westlund, N. Tetrahedron 1999, 55, 14161.
(21) Shimano, M.; Meyers, A. I. J. Am. Chem. Soc. 1994, 116, 6437.
Shimano, M.; Meyers, A. I. J. Org. Chem. 1996, 61, 5714. Shimano, M.;
Matsuo, A. Tetrahedron 1998, 54, 4787. James, B.; Meyers, A. I.
Tetrahedron Lett. 1998, 39, 5301. Kolotuchin, S. V.; Meyers, A. I. J. Org.
Chem. 2000, 65, 3018.
Acknowledgment. We are grateful to the EPSRC for a
grant.
(22) Ahmed, A.; Clayden, J.; Rowley, M. Tetrahedron Lett. 1998, 39,
6103. Ahmed, A.; Clayden, J.; Rowley, M. Synlett 1999, 1954. Bragg, R.
A.; Clayden, J. Tetrahedron Lett. 1999, 40, 8323. Bragg, R. A.; Clayden,
J. Tetrahedron Lett. 1999, 40, 8327.
Supporting Information Available: Experimental details
and characterization data for 5a-e, 10a-e, 10h-j, 11, 12b,
12c, and 12e. This material is available free of charge via
(23) Crandall, J. K.; Ayers, T. A. J. Org. Chem. 1992, 57, 2993. Saito,
S.; Shimada, K.; Yamamoto, H.; Mart´ınez de Marigorta, E.; Fleming, I. J.
Chem. Soc., Chem. Commun. 1997, 1299. Winemiller, M. D.; Harman, W.
D. J. Org. Chem. 2000, 65, 1249. Hunter, R.; Richards, P. Tetrahedron
Lett. 2000, 41, 3755. Ku¨ndig, E. P.; Ripa, A.; Bernardinelli, G. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1071. Padwa, A.; Filipkowski, M. A.; Kline,
D. N.; Murphree, S. S.; Yeske, P. E. J. Org. Chem. 1993, 58, 2061. Pearson,
A. J.; Gontcharov, A. V.; Zhu, P. Y. Tetrahedron 1997, 53, 3849. Brown,
D. W.; Lindquist, M.; Mahon, M. F.; Malm, B.; Nilsson, G. N.; Ninan, A.;
Sainsbury, M.; Westerlund, C. J. Chem. Soc., Perkin Trans. 1 1997, 2337.
Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091.
Saito, S.; Sone, T.; Shimada, K.; Yamamoto, H. Synlett 1999, 81.
OL006786N
(24) Bach, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 729.
(25) Schultz, A. G. J. Chem. Soc., Chem. Commun. 1999, 1263.
(26) Donohoe, T. J.; Garg, R.; Stevenson, C. A. Tetrahedron: Asymmetry
1996, 7, 317.
4232
Org. Lett., Vol. 2, No. 26, 2000