3996
H. Haning et al. / Bioorg. Med. Chem. Lett. 17 (2007) 3992–3996
at a dose of 0.1 mg/kg.13 On the other hand, a pro-
nounced increase of the heart weight of 12–27% could
be demonstrated for this compound in a dose dependent
manner beginning at 0.1 mg/kg in a mouse model for
cardiac effects,14 thus confirming the lack of in vitro
selectivity.
R. J.; Webb, P.; Apriletti, J. W.; Scanlan, T. S. J. Steroid
Biochem. Mol. Biol. 2001, 76, 31.
3. Stephan, Z. F.; Yurachek, E. C.; Sharif, R.; Wasvary, J.
M.; Stele, R. E.; Howes, C. Biochem. Pharmacol. 1992, 43,
1969.
4. (a) Underwood, A. H.; Emmett, J. C.; Ellis, D.; Flynn, S.
B.; Leeson, P. D.; Benson, G. M.; Novelli, R.; Pearce, N.
J.; Shah, V. P. Nature 1986, 324, 425; (b) Ichikawa, K.;
Miyamoto, T.; Kakizawa, T.; Suzuki, S.; Kaneko, A.;
Mori, J.; Hara, M.; Kumagai, M.; Takeda, T.; Hashizume,
K. J. Endocrinol. 2000, 165, 391.
5. Garcia Collazo, A. M.; Koehler, K. F.; Garg, N.;
Fa¨rnegardh, M.; Husman, B.; Ye, L.; Lunggren, J.;
Mellstro¨m, K.; Sandberg, J.; Gynfarb, M.; Ahola, H.;
Malm, J. Bioorg. Med. Chem. Lett. 2006, 16, 1240.
6. (a) Yokoyama, N.; Walker, G. N.; Main, A. J.; Stanton, J.
L.; Morrissey, M. M.; Boehm, C.; Engle, A.; Neubert, A.
D.; Wasvary, J. M.; Stephan, Z. F.; Steele, R. E. J. Med.
Chem. 1995, 38, 695; (b) Ho¨fer, A.; Cahnmann, H. J.
J. Med. Chem. 1964, 7, 326; (c) Pages, R. A.; Burger, A.
J. Med. Chem. 1967, 10, 435.
In conclusion we have expanded the chemical diversity
of potent thyromimetic agents with heterocyclic substit-
uents in the head group. Picomolar agonists have been
synthesized and their selective isoform activation has
been determined. The lack of isoform selectivity has
been confirmed with corresponding in vivo studies dem-
onstrating thyromimetic activity on cholesterol homeo-
stasis as well as on cardiac function in a similar dose
range.
References and notes
7. D’Sa, B. A.; Kisanga, P.; Verkade, J. G. Synlett 2001, 5,
670.
8. (a) Fall, Y.; Santana, L.; Teijeira, M.; Uriarte, E.
Heterocycles 1995, 41, 647; (b) Ceccarelli, S.; De Vellis,
P.; Scuri, R.; Zanarella, S.; Brufani, M. J. Heterocycl.
Chem. 1993, 30, 679.
9. Hickey, D.; Leeson, P. D.; Novelli, R.; Shah, V. P.;
Burpitt, B. E.; Crawford, L. P.; Davies, B. J.; Mitchell, M.
M. B.; Pancholi, K. D. J. Chem. Soc., Perkin Trans. 1
1988, 12, 3103.
1. Haning, H.; Woltering, M.; Mueller, U.; Schmidt, G.;
Schmeck, C.; Voehringer, V.; Kretschmer, A.; Pernerstor-
fer, J. Bioorg. Med. Chem. Lett. 2005, 15, 1835.
2. (a) Yoshihara, H. A.; Apriletti, J. W.; Baxter, J. D.;
Scanlan, T. S. J. Med. Chem. 2003, 46, 3152; (b)
Hangeland, J. J.; Doweyko, A. M.; Dejneka, T.; Friends,
T. J.; Devasthale, P.; Mellstro¨m, K.; Sandberg, J.;
˚
Grynfarb, M.; Sack, J. S.; Einspahr, H.; Fa¨rnegardh,
M.; Husman, B.; Ljunggren, J.; Koehler, K.; Sheppard,
C.; Malm, J.; Ryono, D. E. Bioorg. Med. Chem. Lett.
2004, 14, 3549; (c) Li, Y. L.; Koehler, K. F.; Mellstro¨m,
K.; Garg, N.; Garcia Collazo, A. M.; Fa¨rnegard, M.;
Gynfarb, M.; Husmann, B.; Sandberg, J.; Malm, J.
Bioorg. Med. Chem. Lett. 2006, 16, 884; (d) Hangeland,
J. J.; Friends, T. J.; Doweyko, A. M.; Mellstro¨m, K.;
Sandberg, J.; Grynfarb, M.; Ryono, D. E. Bioorg. Med.
Chem. Lett. 2005, 15, 4579; (e) Dow, R. L.; Schneider, S.
R.; Paight, E. S.; Hank, R. F.; Chiang, P.; Cornelius, P.;
Lee, E.; Newsome, W. P.; Swick, A. G.; Spitzer, J.;
Hargrove, D. M.; Patterson, T. A.; Pandit, J.; Chrunyk, B.
A.; LeMotte, P. K.; Danley, D. E.; Rosner, M. H.;
Ammirati, M. J.; Simons, S. P.; Schulte, G. K.; Tate, B.
F.; DaSilva-Jardine, P. Bioorg. Med. Chem. Lett. 2003, 13,
379; (f) Grover, G. J.; Mellstro¨m, K.; Ye, L.; Malm, J.; Li,
Y. L.; Bladh, L. G.; Sleph, P. G.; Smith, M. A.; George,
R.; Vennstro¨m, B.; Mookhtiar, K.; Horvath, R.; Speel-
man, J.; Egan, D.; Baxter, J. PNAS 2003, 100, 10067; (g)
Ye, l.; Li, Y.-L.; Mellstro¨m, K.; Mellin, C.; Bladh, L.-G.;
Koehler, K.; Garg, N.; Garcia Collazo, A. M.; Litten, C.;
Husman, B.; Persson, K.; Ljunggren, J.; Grover, G.;
Sleph, P. G.; George, R.; Malm, J. J. Med. Chem. 2003,
46, 1580; (h) Chiellini, G.; Apriletti, J. W.; Yoshihara, H.
A.; Baxter, J. D.; Ribeiro, R. CJ.; Scanlan, T. S. Chem.
Biol. 1998, 5, 299; (i) Wagner, R. L.; Huber, B. R.; Shiau,
A. K.; Kelly, A.; Cunha Lima, S. T.; Scanlan, T. S.;
Apriletti, J. W.; Baxter, J. D.; West, B. L.; Fletterick, R. J.
Mol. Endocrinol. 2005, 15, 398; (j) Baxter, J. D.; Dillmann,
W. H.; West, B. L.; Huber, R.; Furlow, J. D.; Fletterick,
10. Li, Y. L.; Liu, Y.; Hedfors, A.; Malm, J.; Mellin, C.;
Zhang, M., WO9900353; Chem. Abstr. 1999, 130, 110054.
11. (a) Ebisawa, M.; Inoue, N.; Fukusawa, H.; Sotome, T.;
Kagechika, H. Chem. Pharm. Bull. 1999, 47, 1348; (b)
Hashimoto, A.; Shi, Y.; Drake, K.; Koh, J. T. Bioorg.
Med. Chem. 2005, 13, 3627.
12. Ocasio, C. A.; Scanlan, T. S. Chem. Biol. 2006, 1, 585.
13. NMRI mice (8–10 animals per group) were orally
treated once daily by gavage (vehicle: solutol/ethanol/
water 10:10:80) with doses of 0.1, 0.3, 1.0 and 3.0 mg/kg
with the ethyl ester of compound 21 over a period of 7
days. At the end of the study blood was retroorbitally
collected and serum cholesterol and triglyceride concen-
tration levels were enzymatically determined using
commercially available test kits (Boehringer Mannheim,
Germany) and an autoanalyzer (EPOS 5060, Eppendorf
Gera¨tebau, Hamburg, Germany). Serum cholesterol
reductions of 32%, 34%, 39% and 41% versus control
were determined.
14. C57BL/6J mice (10-12 animals per group) were orally
treated once daily by gavage (vehicle: solutol/ethanol/
water 10:10:80) with doses of 0.1, 0.3 and 3.0 mg/kg with
the ethyl ester of compound 21 over a period of 11 days.
At the end of the study heart rate was determined using a
computerized non-invasive tail cuff system (TSE Systems
GmbH, Bad Homburg, Germany). Animals were sacri-
ficed and heart weight was determined. Increases in heart
weight of 12%, 17% and 27% were determined,
respectively.