Angewandte
Chemie
folding traps, which do not respond to this isomerization.[15]
However, the initial cleavage rates were recovered following
irradiation at 366 nm (Figure 2).
[4] G. A. Woolley, Acc. Chem. Res. 2005, 38, 486 – 493.
[5] I. Willner, S. Rubin, A. Riklin, J. Am. Chem. Soc. 1991, 113,
3321 – 3325.
[6] a) M. Banghart, K. Borges, E. Isacoff, D. Trauner, R. H. Kramer,
Nat. Neurosci. 2004, 7, 1381 – 1386; b) M. Volgraf, P. Gorostiza,
R. Numano, R. H. Kramer, E. Y. Isacoff, D. Trauner, Nat. Chem.
Biol. 2006, 2, 47 – 52.
[7] L. Guerrero, O. S. Smart, G. A. Woolley, R. K. Allemann, J. Am.
Chem. Soc. 2005, 127, 15624 – 15629.
[8] Y. Liu, D. Sen, J. Mol. Biol. 2004, 341, 887 – 892.
[9] a) S. W. Santoro, G. F. Joyce, Proc. Natl. Acad. Sci. USA 1997, 94,
4262 – 4266; b) S. W. Santoro, G. F. Joyce, Biochemistry 1998, 37,
13330 – 13342.
[10] a) H. Suenaga, R. Liu, Y. Shiramasa, T. Kanagawa, Appl.
Environ. Microbiol. 2005, 71, 4879 – 4884; b) I. H. Chang, J. J.
Tulock, J. W. Liu, W. S. Kim, D. M. Cannon, Y. Lu, P. W. Bohn,
J. V. Sweedler, D. M. Cropek, Environ. Sci. Technol. 2005, 39,
3756 – 3761; c) D. Y. Wang, D. Sen,J. Mol. Biol. 2001, 310, 723 –
734; d) S. H. Pun, F. Tack, N. C. Bellocq, J. J. Cheng, B. H.
Grubbs, G. S. Jensen, M. E. Davis, M. Brewster, M. Janicot, B.
Janssens, W. Floren, A. Bakker, Cancer Biol. Ther. 2004, 3, 641 –
650.
[11] a) Z. Zaborowska, S. Schubert, J. Kurreck, V. A. Erdmann,
FEBS Lett. 2005, 579, 554 – 558; b) Z. Zaborowska, J. P. Furste,
V. A. Erdmann, J. Kurreck, J. Biol. Chem. 2002, 277, 40617 –
40622.
[12] a) C. R. Dass, E. G. Saravolac, Y. Li, L. Q. Sun, Antisense
Nucleic Acid Drug Dev. 2002, 12, 289 – 299; b) M. J. Cairns, T. M.
Hopkins, C. Witherington, L. Wang, L. Q. Sun, Nat. Biotechnol.
1999, 17, 480 – 486; c) S. K. Silverman, Nucleic Acids Res. 2005,
33, 6151 – 6163.
Large differences in the steric demands and hydrophobic
characters of the E and Z isomers of para-azobenzene
residues attached to biomolecules are well-described,[16] but
we are unaware of any other report in which the ortho isomers
give similar activity switching. Preliminary NMR spectro-
scopic investigations indicate that both E and Z isomers of p-1
reside in the C2’-endo furanoside pucker typical of 2’-amido
deoxyribonucleoside analogues and their unmodified con-
geners, and so the active conformation of the catalytic core
containing the photoswitch may be modulated in some other
fashion.
Our demonstration of photomodulated deoxyribozyme-
catalyzed RNA cleavage under multiple-turnover conditions
is of particular interest as the irradiated “on” state maintains
wild-type cleavage rates. The novel analogues described
herein enable incorporation of azobenzene moieties with
readily accessible nucleoside derivatives, which have the
potential to maintain essential base contacts and the biolog-
ical activity of nucleic acids. We envisage that the ability to
reversibly modulate the catalytic RNA cleavage rates of the
10–23 deoxyribozyme by light will add a useful tool to the
repertoire of regulatory biocatalysts. We are currently work-
ing toward the development of light-programmable confor-
mational switches within DNA and RNA,[17] and their
application to the spatiotemporal control of gene expression
and array-based computation.[18]
[13] D. P. C. McGee, A. Vaughnsettle, C. Vargeese, Y. S. Zhai, J. Org.
Chem. 1996, 61, 781 – 785.
[14] See the Supporting Information for details.
[15] a) K. Nakayama, M. Endo, T. Majima, Chem. Commun. 2004,
2386 – 2387; b) A. M. Caamano, M. E. Vazquez, J. Martinez-
Costas, L. Castedo, J. L. Mascarenas, Angew. Chem. 2000, 112,
3234 – 3237; Angew. Chem. Int. Ed. 2000, 39, 3104 – 3107.
[16] C. Dugave, L. Demange, Chem. Rev. 2003, 103, 2475 – 2532.
[17] R. Micura, Angew. Chem. 2006, 118, 32 – 34; Angew. Chem. Int.
Ed. 2006, 45, 30 – 31.
Received: January 15, 2006
Published online: April 18, 2006
Keywords: azo compounds · deoxyribozymes ·
.
enzyme catalysis · photoisomerization · RNA
[18] M. N. Stojanovic, D. Stefanovic, Nat. Biotechnol. 2003, 21, 1069 –
1074.
[1] J. H. Kaplan, B. Forbush, J. F. Hoffman, Biochemistry 1978, 17,
1929 – 1935.
[2] a) A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P.
Holmes, S. P. A. Fodor, Proc. Natl. Acad. Sci. USA 1994, 91,
5022 – 5026; b) S. G. Chaulk, A. M. MacMillan, Nucleic Acids
Res. 1998, 26, 3173 – 3178; c) C. Höbartner, S. K. Silverman,
Angew. Chem. 2005, 117, 7471 – 7475; Angew. Chem. Int. Ed.
2005, 44, 7305 – 7309; d) P. Wenter, B. Fürtig, A. Hainard, H.
Schwalbe, S. Pitsch, Angew. Chem. 2005, 117, 2656 – 2659;
Angew. Chem. Int. Ed. 2005, 44, 2600 – 2603; e) R. Ting, L.
Lermer, D. M. Perrin, J. Am. Chem. Soc. 2004, 126, 12720 –
12721; f) A. Heckel, G. Mayer, J. Am. Chem. Soc. 2005, 127,
822 – 823; g) S. Shah, S. Rangarajan, S. H. Friedman, Angew.
Chem. 2005, 117, 1352 – 1356; Angew. Chem. Int. Ed. 2005, 44,
1328 – 1332; h) H. Ando, T. Furuta, R. Y. Tsien, H. Okamoto,
Nat. Genet. 2001, 28, 317 – 325; i) W. T. Monroe, M. M. McQuain,
M. S. Chang, J. S. Alexander, F. R. Haselton, J. Biol. Chem. 1999,
274, 20895 – 20900.
[3] a) H. Asanuma, T. Ito, T. Yoshida, X. G. Liang, M. Komiyama,
Angew. Chem. 1999, 111, 2547 – 2549; Angew. Chem. Int. Ed.
1999, 38, 2393 – 2395; b) A. Yamazawa, X. G. Liang, H. Asa-
numa, M. Komiyama, Angew. Chem. 2000, 112, 2446 – 2447;
Angew. Chem. Int. Ed. 2000, 39, 2356 – 2357; c) H. Asanuma, D.
Tamaru, A. Yamazawa, M. Z. Liu, M. Komiyama, ChemBio-
Chem 2002, 3, 786 – 789.
Angew. Chem. Int. Ed. 2006, 45, 3306 –3309
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3309