Journal of the American Chemical Society
Page 4 of 5
N. A.; Yudin, A. K. Angew. Chem. Int. Ed. 2010, 49, 262. (c)
(15) Under the limits of detection, we did not observe even traces of
Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
(3) For selected reviews: (a) Zhang, L.; Hou, Z. Chem. Sci. 2013, 4,
3395. (b) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48,
9956. (c) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann,
W. A.; Kühn, F. E. Angew. Chem. Int. Ed. 2011, 50, 8510. (d)
Martin, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259. (e)
Huang, K.; Sun, C.; Shi, Z. Chem. Soc. Rev. 2011, 40, 2435.
(4) For selected reviews on metalꢀcatalyzed reductive couplings: (a)
Moragas, T.; Correa, A.; Martin, R. Chem. Eur. –J. 2014, 20,
8242. (b) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature
2014, 509, 299. (c) Everson, D. A.; Weix, D. J. J. Org. Chem.
2014, 79, 4793. (d) Knappe, C. E. I.; Grupe, S.; Gärtner, D.;
Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Chem. Eur.
–J. 2014, 20, 6828. (e) Montgomery, J. Organonickel Chemis-
try. Organometallics in Synthesis; Ed. John Wiley & Sons, Inc.;
Hoboken, 2013.
(5) Selected references: (a) Nogi, K.; Fujihara, T.; Terao, J.; Tsuji,
Y. Chem. Commun. 2014, 50, 13052. (b) Hendriksen, C.;
Pidko, E. A.; Yang, G.; Schäffner, B.; Vogt, D. Chem. Eur. –J.
2014, 20, 12037. (c) Huguet, N.; Jevtovikj, I.; Gordillo, A.; Leꢀ
jkowski, M. L.; Linder, R.; Bru, M.; Khalimon, A. Y.; Rominꢀ
ger, F.; Schunk, S. A.; Hofmann, P.; Limbach, M. Chem. Eur. –
J. 2014, 20, 1. (d) TranꢀVu, H.; Daugulis, O. ACS Catal. 2013,
3, 2417. (e) Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem.
Soc. 2012, 134, 11900. (f) Fujihara, T.; Nogi, K.; Xu, T.; Terao,
J.; Tsuji, Y. J. Am. Chem. Soc. 2012, 134, 9106. (g) Williams,
C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130,
14936.
the corresponding cyclic anhydride via double carboxylation,
see: Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F. B.; Tani,
Y.; Terao, J.; Sakaki, S.; Tsuji, Y. Org. Lett. 2014, 16, 4960.
(16) While terminal acetylenes resulted in competitive trimerization
pathways, diarylacetylenes bearing a p-CF3ꢀC6H4 and p-OMeꢀ
C6H4 groups resulted in 15% yield in a 1:1 regioisomeric ratio.
The utilization of trimethylsilyl phenyl acetylene resulted in
cinnamyl acid in 33% yield via competitive desilylation.
1
2
3
4
5
6
7
8
(17) Although not fully optimized, the Niꢀcatalyzed carboxylation of
4,4ꢀdimethylpentꢀ2ꢀyne (1z) with CO2 and 2c exclusively reꢀ
sulted in (E)ꢀ2,4,4ꢀtrimethylpentꢀ2ꢀenoic acid (3z; 21% yield).
(18) For selected reviews: (a) Ketcham, J. M.; Shin, I.; Montgomery,
T. P.; Krische, M. J. Angew. Chem. Int. Ed. 2014, 53, 9142. (b)
Moran, J.; Krische, M. J. Pure Appl. Chem. 2012, 84, 1729. (c)
Obora, Y.; Ishii, Y. Synlett 2011, 30. (d) Bower, J. F.; Krische,
M. J. Top. Organomet. Chem. 2011, 43, 107. (e) Dobereiner, G.
E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681. (f) Guillena, G.;
Ramón, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611. (g) Hamid,
M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv. Synth.
Catal. 2007, 349, 1555.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(19) The carboxylation of 1a with 2a as proton source in DMFꢀd7
resulted in the exclusive formation of 3a.
(20) N reductive coupling of 1a with in situ generated benzophenone
was observed in the crude reaction mixtures.
(21) These results are in sharp contrast with a recent elegant work
reported by Matsubara in which i-PrOH (2a) was utilized in Niꢀ
catalyzed reductive couplings via a hydrogen borrowing strateꢀ
gy en route to allylic alcohols: Nakai, K.; Yoshida, Y.; Kuꢀ
rahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2014, 136, 7797.
(22) A rather illustrative correlation between regioselectivity pattern
and the size of the alcohol utilized was found for the reaction of
1d with CO2: MeOH (76% yield, 3d:3d’=1.5:1); EtOH (73%
yield, 3d:3d’=2:1); BnOH (81% yield, 3d:3d’=2:1); iPrOHꢀ2a
(3d:3d’=4:1); tBuOHꢀ2b (85% yield 3d, single regioisomer).
(23) (a) ref. 11a. (b) Powers, D. C.; Anderson, B. L.; Nocera, D. G.
J. Am. Chem. Soc. 2013, 135, 18876.
(24) At present, we do not have a rationale for the lower yield of 3a
when using 5 as compared to the Ni(COD)2/L5 regime.
(25) The reaction of 1a with 5 using 2d as proton source followed
by DCl quench resulted in 3a in 50% yield (not even traces of
3a-D1 in the crude mixtures) while recovering back 2d.
(26) While these results might support a scenario based on Ni(II)
species, we cannot completely rule out the intermediacy of
Ni(I) intermediates generated upon single electron transfer reꢀ
duction. See, for example: (a) see ref. 5f, 15, (b) Duñach, E.;
Esteves, A. P.; Medeiros, M. J.; Olivero, S. New J. Chem. 2005,
29, 633. (c) Nadal, M. L.; Bosch, J.; Vila, J. M.; Klein, G.; Riꢀ
cart, S.; Moretó, J. M. J. Am. Chem. Soc. 2005, 127, 10476.
(27) (a) Trost, B. M.; Ball, Z. T. Synthesis 2005, 6, 853. (b) Andersꢀ
son, P. G.; Munslow, I. J. Modern Reduction Methods; Ed.
WileyꢀVCH, 2008. (c) See also ref. 8d or ref. 10 for examples
dealing with CO2 or CO as coupling partner.
(28) (a) Fischer, R.; Langer, J.; Malassa, A.; Walther, D.; Görls, H.;
Vaughan, G. Chem. Commun. 2006, 2510. (b) Hoberg, H.; Perꢀ
es, Y.; Krüger, C.; Tsay, Y. H. Angew. Chem. Int. Ed. 1987, 26,
771. (c) Hoberg, H.; Schäfer, H.; Burkhardt, G.; Krüger, C.;
Rmao, M. J. J. Organomet. Chem. 1984, 266, 203. (d) Hoberg,
H.; Schäfer, D. J. Organomet. Chem. 1983, 251, C51. (d)
Burkhardt, G.; Hoberg, H. Angew. Chem. Int. Ed. 1982, 21, 76.
(29) Care must be taken when invoking that the regioselectivity
pattern is merely attributed to a steric model since the observed
outcome for 3i or 3o, among others, might indicate that other
factors come into play.
(6) For selected examples: (a) Patai, S. The Chemistry of Acid De-
rivatives; Wiley: New York, 1992. (b) Gooßen, L. J.;
Rodríguez, N.; Gooßen, K. Angew. Chem. Int. Ed. 2008, 47,
3100. (c) Maag, H. Prodrugs of Carboxylic Acids; Springer:
New York, 2007.
(7) For selected carboxylation events of ꢀsystems using stoichioꢀ
metric amounts of metal complexes: (a) Shimizu, K.; Takimoto,
M.; Sato, Y.; Mori, M. Org. Lett. 2005, 7, 195. (b) Aoki, M.;
Kaneko, M.; Izumi, S.; Ukai, K.; Iwasawa, N. Chem. Commun.
2004, 2568. (c) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayaꢀ
ma, K.; Yamamoto, Y. J. Org. Chem. 1999, 64, 3975. (d)
Hoberg, H.; Ballesteros, A.; Signan, A.; Jegat, C.; Milchereit,
A. Synthesis 1991, 395. (e) Hoberg, H.; Peres, Y.; Michereit, A.
J. Organomet. Chem. 1986, 307, C38, and citations therein.
(8) (a) Takimoto, M.; Hou, Z. Chem. Eur. –J. 2013, 19, 11439. (b)
Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. J. Am. Chem. Soc.
2012, 134, 14314. (c) Fujihara, T.; Tani, Y.; Semba, K.; Terao,
J.; Tsuji, Y. Angew. Chem. Int. Ed. 2012, 51, 11487. (d) Fujihaꢀ
ra, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji Y. Angew. Chem. Int.
Ed. 2011, 50, 523. (e) Li, S.; Yuan, W.; Ma, S. Angew. Chem.
Int. Ed. 2011, 50, 2578.
(9) Wittcoff, H. A.; Reuben, B. G.; Plotkin, J. S. Industrial Organic
Chemicals; Ed.; John Wiley & Sons, Inc.; Hoboken, 2012.
(10) For selected metalꢀcatalyzed hydrocarboxylation reactions of
alkynes using CO or CO surrogates occurring with C1ꢀ
selectivity: (a) Hou, J.; Xie, J.; Zhou, Q. Angew. Chem. Int. Ed.
2015, 54, 6302. (b) Trotus, I. –T.; Zimmermann, T.; Schüth, F.
Chem. Rev. 2014, 114, 1761. (c) Brennführer, A.; Neumann,
H.; Beller, M. ChemCatChem 2009, 1, 28. (c) El Ali, B.;
Vasapollo, G.; Alper, H. J. Org. Chem. 1993, 58, 4739.
(11) (a) Wang, X.; Liu, Y.; Martin, R. J. Am. Chem. Soc. 2015, 137,
6476. (b) Moragas, T.; Cornella, J.; Martin, R. J. Am. Chem.
Soc. 2014, 136, 17702. (c) Liu, L.; Cornella, J.; Martin, R. J.
Am. Chem. Soc. 2014, 136, 11212. (d) Correa, A.; León, T.;
Martin, R. J. Am. Chem. Soc. 2014, 136, 1062. (e) León, T.;
Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221. (f)
Correa, A.; Martin, R. J. Am. Chem. Soc. 2009, 131, 15974.
(12) Correa, A.; Martin, R. Angew. Chem. Int. Ed. 2009, 48, 6201.
(13) See Supporting information for details
(30) Although radical intermediates might also account for the obꢀ
served reactivity, we found no significant inhibition in the presꢀ
ence of BHT or related radical scavengers.
(14) The utilization of TFA, triflic acid or benzoic acid as proton
sources resulted in no conversion to products.
ACS Paragon Plus Environment