1126
X.-J. Mu et al. / Tetrahedron Letters 47 (2006) 1125–1127
Table 1. Catalyst-free synthesis of a-aminophosphonate 1a
nates. The reaction process is highly efficient, economic,
and also environmentally friendly.
Entry
Solvent
Temp (ꢁC)
Time (min)
Yield (%)a
1
2
3
4
5
6
7
8
9
EtOH
EtOH
EtOH
Toluene
rt
50
reflux
Reflux
Reflux
rt
50
80
80, mwc
120
120
120
120
120
120
120
120
2
nrb
nr
nr
nr
nr
nr
76
85
98
Acknowledgements
CH2Cl2
We thank the Key Laboratory of Organic Synthesis of
Jiangsu Province and Suzhou Scientific Committee for
financial supports (JSK016 and SG 0219).
Solvent-free
Solvent-free
Solvent-free
Solvent-free
a Isolated yields.
Supplementary data
b nr = no reaction.
c mw = microwave heating.
Supplementary data associated with this article can be
conducted and the results are shown in Table 2. Reac-
tions involving benzaldehydes and anilines produced
products 1a–1e and 1i–1n in excellent yields.19 Reactions
of aliphatic amines, aliphatic aldehydes, and hetero-
cyclic aldehydes such as 2-furylaldehyde and 2-thiophene
aldehyde produced corresponding products 1f–1g, 1o–
1r, and 1s–1u in good to excellent yields. Steric hindered
tert-butyl aldehyde and 2,6-dimethyl aniline were also
evaluated. In the case of reaction involving benzalde-
hyde and 2,6-dimethylaniline, good yield of 1v (78%)
was produced. However, reactions involving tert-butyl
aldehyde, p-toluidine, or 2,6-dimethyl aniline afforded
1w and 1x in 53% and 40% yields, respectively, much
lower than reactions using other substrates listed in
Table 2.
References and notes
1. Sheridan, R. P. J. Chem. Inf. Comput. Sci. 2002, 42, 103.
2. (a) Kafarski, P.; Lejczak, B. Phosphorus, Sulfur Silicon
Relat. Elem. 1991, 63, 1993; (b) Allen, M. C.; Fuhrer, W.;
Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32,
1652; (c) Grembecka, J.; Mucha, A.; Cierpicki, T.;
Kafarski, P. J. Med. Chem. 2003, 46, 2641; (d) Moore, J.
D.; Sprott, K. T.; Fisher, A. J.; Tony, M. Biochemistry
2002, 67, 8123; (e) Liu, W.; Rogers, C. J.; Fisher, A. J.;
Toney, M. Biochemistry 2002, 41, 12320; (f) Kim, K. S.;
Hurh, E. Y.; Youn, J. N.; Park, J. I. J. Org. Chem. 1999,
64, 9272; (g) Osipov, S. N.; Artyushin, O. I.; Kolomeits, A.
F.; Bruneau, C.; Dixneuf, P. H. Synlett 2000, 1031;
(h) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. J.
Chem. Soc., Perkin Trans. 1 1984, 2845; (i) Atherton, F.
R.; Hassal, C. H.; Lambert, R. W. J. Med. Chem. 1986,
29, 29.
In summary, we have developed a novel microwave-
assisted, catalysts-free, and solvent-free Kabachnik–
Fields reaction for the synthesis of a-amino phospho-
3. (a) Kabachnik, M. I.; Medved, T. Y. Dokl. Akad. Nauk
SSSR. 1952, 689; Chem. Abstr. 1953, 47, 2724b; (b) Fields,
E. K. J. Am. Chem. Soc. 1952, 74, 1528; (c) For a review
on the Kabachnik–Fields reaction, see: Cherkasov, R. A.;
Galkin, V. I. Russ. Chem. Rev. 1998, 67, 857.
4. Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.
5. (a) Qian, C. T. T.; Huang, S. J. Org. Chem. 1998, 63, 4125;
(b) Lee, S.; Park, J. H.; Kang, J.; Lee, J. K. Chem.
Commun. 2001, 1698.
6. Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669.
7. Xu, F.; Luo, Y. Q.; Deng, M. Y.; Shen, Q. Eur. J. Org.
Chem. 2003, 4728.
8. Saidi, M. R.; Azizi, N. Synlett 2002, 1347.
9. Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Synthesis 2004,
16, 2692.
10. Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.;
Narsihmulu, C. Tetrahedron Lett. 2001, 42, 5561.
11. Yadav, J. S.; Reddy, B. V. S.; Madan, C. Synlett 2001,
1131.
12. Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42,
8211.
13. Akiyama, T.; Sanada, M.; Fuchibe, K. Synlett 2003, 1463.
14. Ha, H.-J.; Nam, G.-S. Synth. Commun. 1992, 22, 1143.
15. Matveeva, E. D.; Podrugina, T. A.; Tishkovskaya, E. V.;
Tomilova, L. G.; Zefirov, N. S. Synlett 2003, 15, 2321.
16. Ranu, B. C.; Hajra, A. Green Chem. 2002, 4, 551.
17. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250.
18. For a general review on solvent-free reactions, see:
Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
19. General procedures for preparation of a-amino phospho-
nates under conventional heating: Benzaldehyde (1 mmol),
Table 2. Microwave-assisted synthesis of a-aminophosphonates
Producta
R1
R2
Time
(min)
Yield
(%)b
1a
1b
1c
1d
1e
1f
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
98
94
96
97
96
86
87
86
96
94
91
89
87
84
88
83
85
80
88
76
85
78
53
40
p-MeC6H4
p-ClC6H4
o-ClC6H4
m-BrC6H4
Naphthyl
Cyclohexyl
PhCH2
1g
1h
1i
p-MeOC6H4
p-MeOC6H4
p-MeOC6H4
p-NO2C6H4
p-NO2C6H4
p-NO2C6H4
i-Propyl
i-Propyl
i-Propyl
i-Propyl
2-Furyl
2-Furyl
2-Thiophene
Ph
Ph
1j
p-MeC6H4
p-ClC6H4
Ph
p-MeOC6H4
p-ClC6H4
Ph
p-MeC6H4
p-MeOC6H4
p-ClC6H4
p-MeC6H4
p-ClC6H4
p-NO2C6H4
2,6-diMeC6H3
p-MeC6H4
2,6-diMeC6H3
1k
1l
1m
1n
1o
1p
1q
1r
1s
1t
1u
1v
1w
1x
tert-Butyl
tert-Butyl
a Products were characterized by their NMR and MS spectra.
b After flash column chromatography.