9435
A cyclization–pinacol sequence must proceed with retention of configuration at the homoallylic
stereogenic center.15 In contrast, a [3,3]-sigmatropic rearrangement–aldol process would yield
racemic products if the rearranged oxonium ion (26 in the example illustrated in Scheme 2)
contained no stereogenic centers and the barrier for aldol cyclization was higher than that of
C–C single bond rotation.§§ The complete preservation of enantiomeric purity in the conversion
of 1020 is consistent with a cyclization–pinacol pathway. This result constitutes a more
convincing mechanistic proof than the one reported earlier,4 since the weakly nucleophilic
terminal vinyl group of 10 provides no bias towards Prins cyclization.
In summary, 3-acyl-5-unsubstituted tetrahydrofurans can be prepared with high stereocontrol
and enantiopurity from methoxymethyl or (methylthio)methyl derivatives of allylic diols. These
transformations, and related reactions reported earlier,3–10 most likely proceed by Prins cycliza-
tion–pinacol rearrangement pathways.
Acknowledgements
This research was supported by a Javits Neuroscience Investigator Award from NIH NINDS
(NS-12389) and by NIH NRSA postdoctoral fellowships to C.M.G. (GM-14524) and J.P.W.
(GM-20140). Merck, Pfizer and Roche Biosciences provided additional support. NMR and mass
spectra were determined at UC Irvine using instrumentation acquired with the assistance of NSF
and NIH Shared Instrumentation programs.
References
1. Elliott, M. C. J. Chem. Soc., Perkin Trans. 1 2000, 1291–1318 and earlier reviews in this series.
2. For brief reviews see: (a) Overman, L. E. Acc. Chem. Res. 1992, 25, 352–359. (b) Overman, L. E. Aldrichim. Acta
1995, 28, 107–120.
3. Martinet, P.; Mousset, G. Bull. Soc. Chim. Fr. 1970, 1071–1076.
4. Hopkins, M. H.; Overman, L. E.; Rishton, G. M. J. Am. Chem. Soc. 1991, 113, 5354–5365.
5. Brown, M. J.; Harrison, T.; Herrinton, P. M.; Hopkins, M. H.; Hutchinson, K. D.; Mishra, P.; Overman, L. E.
J. Am. Chem. Soc. 1991, 113, 5365–5378.
6. Brown, M. J.; Harrison, T.; Overman, L. E. J. Am. Chem. Soc. 1991, 113, 5378–5384.
7. Grese, T. A.; Hutchinson, K. D.; Overman, L. E. J. Org. Chem. 1993, 58, 2468–2477.
8. MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 1995, 117, 10391–10392.
9. Hanaki, N.; Link, J. T.; MacMillan, D. W. C.; Overman, L. E.; Trankle, W. G.; Wurster, J. A. Org. Lett. 2000,
2, 223–226.
10. Overman, L. E.; Pennington, L. D. Org. Lett. 2000, 2, 2683–2686.
11. Berger, D.; Overman, L. E.; Renhowe, P. A. J. Am. Chem. Soc. 1997, 119, 2446–2452.
12. Guindon, Y.; Yoakim, C.; Morton, H. E. Tetrahedron Lett. 1983, 24, 2969–2972.
13. Trost, B. M.; Shibata, T.; Martin, S. J. J. Am. Chem. Soc. 1982, 104, 3228–3229.
14. Snider, B. B. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 2, pp. 527–562.
15. Rickborn, B. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 3, pp. 721–732.
16. Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conformational Analysis; American Chemical Society:
Washington, DC, 1965; Chapters 2 and 3.
§§ A reasonable assumption considering the low barriers of CꢀC single bond rotations.16