A. Hamei et al. ■Gold Clustering at Dimethylsulfoximine Me2S(0 )NH
893
Bis[bis(triphenylphosphine)gold(l)Jdimethyl-
sulfoximide(+) tetrafluoroborate(-)
(971.29): calcd. C 34.62, H 3.11, N 1.44; found C 34.13,
H 3.21, N 1.50.
A
solution of [(Ph3P)2Au]BF4 is prepared from
Crystal structure analysis
(Ph3P)2AuCl (0.378 g) and AgBF4 (0.097 g, 0.5 mmol
each) in 40 ml of CH2CI2 at -20 °C and filtered into a so-
lution ofMe3SiNS(0)Me2(0.041 g, 0.25 mmol) in 10 ml
of the same solvent containing some NaBF4.The mixture
is allowed to warm up to room temperature and is then
stirred for another 2 h. After filtration the volume of the
filtrate is reduced to 5 ml and petroleum ether is added
to precipitate the colourless product (0.657 g, 84% yield,
m. p. 112 °C with decomp.). NMR, 'H: 3.06 (s, 6H, Me),
7.37 -7.73 (m, 60 H, Ph); "B: -1.27 (s); 3IP{'H}: 30.8
(s). MS(FAB): m/z 720 [(Ph3P)2Au]+, 459 [(Ph3P)Au]+.
C74H66Au2BF4NOP4S (1622.08): calcd. C 54.79, H 4.10,
N 0.86; found C 54.21, H 4.14, N 0.81.
The data were collected on a Nonius KappaCCD
area detector equipped with a rotating anode (Nonius
FR591). Graphite-monochromated Mo-KQradiation was
used. The structure was solved by a combination of direct
methods and difference-Fourier syntheses and refined by
full matrix least-squares calculations on F2. The thermal
motion was treated anisotropically for all non-hydrogen
atoms. Hydrogen atoms were calculated and allowed to
ride on their corresponding C atoms with fixed isotropic
contributions.
Crystal data for
C39
H
38AU
2
BCI
2
F
4
NOP
2S: Mx =
1182.35, colorless crystals, monoclinic,
a
= 9.881(1),/? =
24.490(1), c= 17.468(1) Ä, ß= 102.234(1)°, space group
P2,/n, Z = 4, V= 4131.06(11) A3, pcMc = 1-901 gem“3,
F(000) = 2264; T = 0 °C. 70534 measured and 8426
unique reflections [R\nl = 0.0865]; 478 refined parame-
The same dinuclear product is obtained from the
reagents in a 1:1 molar ratio: Me3SiNS(0)Me2(0.082 g),
(Ph3P)2AuCl (0.378 g), AgBF4(0.097 g, 0.5 mmol each),
20 +40 ml of CH2C12, -20 °C, 0.5 + 2 h (0.34 g yield,
same analytical and spectroscopic data).
ters, wR2 = 0.1264,
R = 0.0554 for 8426 reflections used
for refinement. Residual electron densities: +2.40/-2.14
e/A3(located around the gold atoms). The function mini-
mized was: wR2 = {[Zw(F02 -Fc2)2]/X[w(F02)2]}1/2;w=
[l,2-Bis(diphenylphosphino)ethane]digold(I)-p-N,N-
dimethylsulfoximide(+) tetrafluoroborate(-)
1/[ct2(F02) +(ap)2+bp]-,p =
(F02+2Fc2)/3; a = 0.0264,
b
= 67.93. Important interatomic distances and angles
A solution of [bis(diphenylphosphino)ethane]digold(I)
bis(tetrafluoroborate), (dppe)Au2(BF4)2,is prepared from
(dppe)Au2Cl2 (0.036 g, 0.041 mmol) and AgBF4
(0.0156 g, 0,082 mmol) in 20 ml of CH2C12 at -20 °C
and filtered into a solution of Me3SiNS(0)Me2(0.0067 g,
0.041 mmol) in 10ml ofthe same solvent containing some
NaBF4. After 30 min the reaction mixture is allowed to
warm to room temperature and stirred for 2 h. After fil-
tration the filtrate is concentrated to a volume of 3 ml and
layered with petroleum ether to give a white microcrys-
talline precipitate (0.03 g, 80.6% yield, m. p. 109 °C with
decomp.) NM R,1H: 2.78 (m, 4H, CH2), 3.74 (s, 6H, Me),
7.25 -7.55 (m, 20 H, Ph); UB: -1.19 (s); 3iP{'H}: 27.6
(s). MS(FAB): 595 [(dppe)Au]+. C28H30Au2BF4NOP2S
are given in the figure caption. Anisotropic thermal pa-
rameters and complete lists of interatomic distances and
angles have been deposited with the Cambridge Crystal-
lographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK. The data are available on request on quoting
CCDC-148154.
Acknowledgement
This work was supported by Deutsche Forschungsge-
meinschaft, Fonds der Chemischen Industrie, and Volks-
wagenstiftung. Donations of chemicals by Degussa-Hüls
AG and Heraeus GmbH aregratefully acknowledged. The
authors thank Ms. M. Grosche for establishing the X-ray
data set.
[1] a) H. Schmidbaur (ed.): Gold: Progress in Chem-
istry, Biochemistry andTechnology, J. Wiley & Sons,
Chichester (1999); b) R. J. Puddephatt, The Chem-
istry of Gold, Elsevier, Amsterdam (1978).
[7] a) A. Schier, A. Grohmann, J. M. Lopez-de-Luzu-
riaga, H. Schmidbaur, Inorg. Chem. 39, 547 (2000);
b) A. Grohmann, J. Riede, H. Schmidbaur, Nature
345, 140 (1990); c) E. Zeller, H. Beruda, A. Kolb,
P. Bissinger, J. Riede, H. Schmidbaur, Nature 352,
141 (1991); d) Y. L. Shlovokhotov, Y. T. Struchkov,
J. Organomet. Chem. 277, 143 (1984); e) E. G.
Perevalova, E. I. Smyslova, V. P. Dyadchenko, K. I.
Grandberg, A. N. Nesmeyanov, Izv. Akad. Nauk.
SSSR, Ser. Khim. 1980, 1455.
[2] H. Schmidbaur, Interdisc. Sei. Rev. 17, 213 (1992).
[3] H. Schmidbaur, Gold Bull. 23, 11 (1990).
[4] H. Schmidbaur, Gold Bull. 33, 3 (2000).
[5] a) H. Schmidbaur, Chem. Soc. Rev. (London) 24,391
(1995); b) J. Vicente, M. T. Chicote, R. Guerrero,
P. G. Jones, J. Am. Chem. Soc. 118, 699 (1996).
[6] J. Strähle, in ref. [1], pp. 311 -348.
Brought to you by | New York University Bobst Library Technical Services
Authenticated
Download Date | 6/9/15 4:32 PM