Journal of the American Chemical Society
Article
Ohashi, M.; Ogoshi, S. Nickel-Catalyzed Enantioselective Synthesis of
Cyclobutenes via [2+2] Cycloaddition of α,β-Unsaturated Carbonyls
with 1,3-Enynes. Synthesis 2016, 48, 2789. (b) Kossler, D.; Cramer, N.
Neutral chiral cyclopentadienyl Ru(II)Cl catalysts enable enantiose-
lective [2+2]-cycloadditions. Chem. Sci. 2017, 8, 1862.
attractive toward the synthesis of cyclobutane containing
targets.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
́
(6) García-Morales, C.; Ranieri, B.; Escofet, I.; Lopez-Suarez, L.;
Obradors, C.; Konovalov, A. I.; Echavarren, A. M. Enantioselective
Synthesis of Cyclobutenes by Intermolecular [2+2] Cycloaddition
with Non-C2 Symmetric Digold Catalysts. J. Am. Chem. Soc. 2017,
139, 13628.
Crystallographic data for C13H14O2 (CIF)
Crystallographic data for C22H17Br5O2 (CIF)
Experimental procedures, analytical data for all new
(7) (a) Teller, H.; Flugge, S.; Goddard, R.; Furstner, A.
̈ ̈
Enantioselective Gold Catalysis: Opportunities Provided by Mono-
dentate Phosphoramidite Ligands with an Acyclic TADDOL
Crystallographic data for C20H17F3O3 (CIF)
́
Backbone. Angew. Chem., Int. Ed. 2010, 49, 1949. (b) Gonzalez, A.
Z.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D.
Phosphoramidite Gold(I)-Catalyzed Diastereo- and Enantioselective
Synthesis of 3,4-Substituted Pyrrolidines. J. Am. Chem. Soc. 2011, 133,
5500. (c) Teller, H.; Corbet, M.; Mantilli, L.; Gopakumar, G.;
̈
Goddard, R.; Thiel, W.; Furstner, A. One-Point Binding Ligands for
Asymmetric Gold Catalysis: Phosphoramidites with a TADDOL-
AUTHOR INFORMATION
Corresponding Author
ORCID
■
Related but Acyclic Backbone. J. Am. Chem. Soc. 2012, 134, 15331.
́
́
́
(d) Suarez-Pantiga, S.; Hernandez-Díaz, C.; Rubio, E.; Gonzalez, J. M.
Intermolecular [2+2] Reaction of N-Allenylsulfonamides with Vinyl-
arenes: Enantioselective Gold(I)-Catalyzed Synthesis of Cyclobutane
Author Contributions
‡J.M.W. and M.L.C. contributed equally to this work.
́
Derivatives. Angew. Chem., Int. Ed. 2012, 51, 11552. (e) Mauleon, P.
Notes
Gold-Catalyzed Intermolecular Enantioselective [2+2] Cycloaddi-
tions of Sulfonylallenamides and Styrenes. ChemCatChem 2013, 5,
2149. (f) Wang, Y.; Zhang, P.; Liu, Y.; Xia, F.; Zhang, J.
Enantioselective gold-catalyzed intermolecular [2+2] versus [4+2]-
cycloadditions of 3-styrylindoles with N-allenamides: observation of
interesting substituent effects. Chem. Sci. 2015, 6, 5564. (g) Jia, M.;
Monari, M.; Yang, Q.-Q.; Bandini, M. Enantioselective gold catalyzed
dearomative [2+2]-cycloaddition between indoles and allenamides.
Chem. Commun. 2015, 51, 2320.
(8) (a) Hu, J.-L.; Feng, L.-W.; Wang, L.; Xie, Z.; Tang, Y.; Li, X.
Enantioselective Construction of Cyclobutanes: A New and Concise
Approach to the Total Synthesis of (+)-Piperarborenine B. J. Am.
Chem. Soc. 2016, 138, 13151. (b) Kang, T.; Ge, S.; Lin, L.; Lu, Y.; Liu,
X.; Feng, X. A Chiral N,N′-Dioxide−ZnII Complex Catalyzes the
Enantioselective [2+2] Cycloaddition of Alkynones with Cyclic Enol
Silyl Ethers. Angew. Chem., Int. Ed. 2016, 55, 5541.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Indiana University and the National Institutes of
Health (R01GM110131) for financial support. The Deutsche
Forschungsgemeinschaft (WI 4933/1-2) is acknowledged for
postdoctoral fellowship support to J.M.W.
REFERENCES
■
̈
(1) (a) Diels, O.; Alder, K. Uber die Ursachen der Azoesterreaktion.
Justus Liebigs Ann. Chem. 1926, 450, 237. (b) Diels, O.; Alder, K.
Synthesen in der hydroaromatischen Reihe. Justus Liebigs Ann. Chem.
1928, 460, 98. (c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
Vassilikogiannakis, G. The Diels−Alder Reaction in Total Synthesis.
Angew. Chem., Int. Ed. 2002, 41, 1668.
(9) (a) Ishihara, K.; Nakano, K. Enantioselective [2+2] Cyclo-
addition of Unactivated Alkenes with α-Acyloxyacroleins Catalyzed by
Chiral Organoammonium Salts. J. Am. Chem. Soc. 2007, 129, 8930.
(b) Talavera, G.; Reyes, E.; Vicario, J. L.; Carrillo, L. Cooperative
Dienamine/Hydrogen-Bonding Catalysis: Enantioselective Formal
[2+2] Cycloaddition of Enals with Nitroalkenes. Angew. Chem., Int.
Ed. 2012, 51, 4104. (c) Albrecht, Ł.; Dickmeiss, G.; Acosta, F. C.;
Rodríguez-Escrich, C.; Davis, R. L.; Jørgensen, K. A. Asymmetric
Organocatalytic Formal [2+2]-Cycloadditions via Bifunctional H-
Bond Directing Dienamine Catalysis. J. Am. Chem. Soc. 2012, 134,
2543. (d) Duan, G.-J.; Ling, J.-B.; Wang, W.-P.; Luo, Y.-C.; Xu, P.-F.
Organocatalytic formal [2+2] cycloaddition initiated by vinylogous
Friedel−Crafts alkylation: enantioselective synthesis of substituted
cyclobutane derivatives. Chem. Commun. 2013, 49, 4625.
(10) (a) Guo, H.; Herdtweck, E.; Bach, T. Enantioselective Lewis
Acid Catalysis in Intramolecular [2 + 2] Photocycloaddition
Reactions of Coumarins. Angew. Chem., Int. Ed. 2010, 49, 7782.
(b) Brimioulle, R.; Guo, H.; Bach, T. Enantioselective Intramolecular
[2+2] Photocycloaddition Reactions of 4-Substituted Coumarins
Catalyzed by a Chiral Lewis Acid. Chem. - Eur. J. 2012, 18, 7552.
(c) Brimioulle, R.; Bauer, A.; Bach, T. Enantioselective Lewis Acid
Catalysis in Intramolecular [2+2] Photocycloaddition Reactions: A
Mechanistic Comparison between Representative Coumarin and
(2) (a) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital
Symmetry. Angew. Chem., Int. Ed. Engl. 1969, 8, 781. (b) Fleming, I.
Molecular Orbitals and Organic Chemical Reactions; Wiley: Chichester,
2009.
(3) For reviews, see: (a) Kagan, H. B.; Riant, O. Catalytic
asymmetric Diels Alder reactions. Chem. Rev. 1992, 92, 1007.
(b) Corey, E. J. Catalytic Enantioselective Diels−Alder Reactions:
Methods, Mechanistic Fundamentals, Pathways, and Applications.
Angew. Chem., Int. Ed. 2002, 41, 1650.
(4) For recent reviews about enantioselective arylcyclobutane
syntheses, see: (a) Brimioulle, R.; Lenhart, D.; Maturi, M. M.;
Bach, T. Enantioselective Catalysis of Photochemical Reactions.
Angew. Chem., Int. Ed. 2015, 54, 3872. (b) Xu, Y.; Conner, M. L.;
Brown, M. K. Cyclobutane and Cyclobutene Synthesis: Catalytic
Enantioselective [2+2] Cycloadditions. Angew. Chem., Int. Ed. 2015,
̈
54, 11918. (c) Poplata, S.; Troster, A.; Zou, Y.-Q.; Bach, T. Recent
Advances in the Synthesis of Cyclobutanes by Olefin [2+2]
Photocycloaddition Reactions. Chem. Rev. 2016, 116, 9748.
(d) Fructos, M. R.; Prieto, A. [2+2] Cycloaddition reactions
promoted by group 11 metal-based catalysts. Tetrahedron 2016, 72,
355. (e) Wang, M.; Lu, P. Catalytic approaches to assemble
cyclobutane motifs in natural product synthesis. Org. Chem. Front.
2018, 5, 254. (f) Brenninger, C.; Jolliffe, J. D.; Bach, T. Chromophore
Activation of α,β-Unsaturated Carbonyl Compounds and Its
Application to Enantioselective Photochemical Reactions. Angew.
Chem., Int. Ed. 2018, 57, 14338.
̈
Enone Substrates. J. Am. Chem. Soc. 2015, 137, 5170. (d) Troster, A.;
Alonso, R.; Bauer, A.; Bach, T. Enantioselective Intermolecular [2+2]
Photocycloaddition Reactions of 2(1H)-Quinolones Induced by
Visible Light Irradiation. J. Am. Chem. Soc. 2016, 138, 7808.
(e) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T.
(5) For recent examples utilizing transition metal catalysis, see:
(a) Kumar, R.; Tamai, E.; Ohnishi, A.; Nishimura, A.; Hoshimoto, Y.;
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX