9206
J . Org. Chem. 2000, 65, 9206-9209
Notes
transformed into silyl sulfines and thioaldehyde S-
Novel Access to Th ioa cylsila n es w ith
Ben zotr ia zole-Med ia ted Meth od ology
oxides11 and be used as spin-trapping agents.12 Enethi-
olizable thioacylsilanes can afford 2-silyl thiacycloalkenes
or Z-R-silyl sulfides, convertable by protiodesilylation into
Z-vinyl sulfides, which are precursors of thioannulated
cyclopentenes and thiofunctionalized enones.13
Alessandro Degl’Innocenti* and Antonella Capperucci
Centro C.N.R. Composti Eterociclici e loro Applicazioni and
Dipartimento di Chimica Organica, via G. Capponi 9,
50121 Firenze, Italy
Novel routes to thioacylsilanes are of considerable
interest, and a general entry was recently reported, using
a hexamethyldisilathiane-based thionation procedure.14,15
We now present an alternative method for the generation
of thioacylsilanes using benzotriazole chemistry.
Daniela C. Oniciu
Alchem Laboratories Corporation,
13305 Rachael Boulevard, Alachua, Florida 32615
Alan R. Katritzky*
Center for Heterocyclic Compounds,
Department of Chemistry, University of Florida,
Gainesville, Florida 32611-7200
Resu lts a n d Discu ssion
1-(Benzotriazol-1-yl)-1-phenoxyalkanes 1 and 2 were
prepared as described previously (Scheme 1).16 1-(Ben-
zotriazol-1-yl)-1-methylthioalkanes 7a ,b,f,g were obtain-
ed from (benzotriazol-1-yl)methyl methyl thioether (6a )
by reactions with BuLi followed by alkyl halides or alde-
hydes, as described elsewhere.17 1-(Benzotriazol-1-yl)-1-
thioalkane derivatives 7c and 7e were prepared accord-
ing to known procedures.18-20 Reactions of derivatives 2
and 7a -e with BuLi and subsequent treatment with
trimethylchlorosilane afforded the -trimethylsilyl-benzo-
triazoles 3 and 8a -d , respectively (Schemes 1 and 2).
katritzky@chem.ufl.edu
Received J uly 31, 2000
In tr od u ction
Thioformyl- and thioacetyl-silanes are successful in-
termediates for thiocarbonyl-containing compounds,1-3
and useful building blocks for polyfunctionalized mol-
ecules. Besides being synthetic equivalents of thioalde-
hydes, thioacylsilanes4 are characterized by the high
reactivity of the carbon-sulfur double bond toward
nucleophiles, electrophiles, and cycloaddition reactions,
which lead to various compounds containing the Si-C-S
unit.5 Thus, thioacylsilanes react with organolithium
reagents to yield vinyl sulfides,6 and cycloadd to 1,3-
dipoles,6a,7 dienes,4,6b,8 heterodienes,9 and, under photo-
induced conditions, olefins.10 Silyl thioketones can be
Sch em e 1
(1) Capperucci, A.; Degl’Innocenti, A.; Scafato, P.; Spagnolo, P.
Phosphorus, Sulfur Silicon 1997, 120&121, 165.
(2) Capperucci, A.; Degl’Innocenti, A.; Scafato, P. in Recent Research
Developments in Synthetic Organic Chemistry; Pandalai, S. G., Ed.;
Transworld Research Network: India, 1998; p 171.
(3) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.;
Ricci, A. J . Organomet. Chem. 1998, 567, 181. Bonini, B. F.; Fochi, M.
in Advances in Sulfur Chemistry; Rayner, C. M., Ed.; J AI: Stamford,
2000; Vol. 2, p 1.
(4) (a) Bonini, B. F.; Fochi, M. Rev. Heteroatom. Chem. 1997, 16,
46-67. (b) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti,
G.; Ricci, A.; Varchi, G. Tetrahedron Lett. 1999, 40, 6473-6476.
(5) Bonini, B. F. Phosphorus, Sulfur, Silicon 1993, 74, 31-45.
(6) (a) Bonini, B. F.; Mazzanti, G.; Zani, P.; Barbaro, G.; Battaglia,
A.; Giorgianni, P.; Maccagnani, G.; Macciantelli, D. J . Chem. Soc.,
Perkin Trans. 1 1986, 381-385. (b) Bonini, B. F.; Mazzanti, G.; Zani,
P.; Maccagnani, G. J . Chem. Soc., Perkin Trans. 1 1989, 2083-2088.
(c) Bonini, B. F.; Maccagnani, G.; Masiero, S.; Mazzanti, G.; Zani, P.
Tetrahedron Lett. 1989, 30, 2677-2680.
(11) Barbaro, G.; Battaglia, A.; Giorgianni, P.; Bonini, B. F.; Mac-
cagnani, G.; Zani, P. J . Org. Chem. 1990, 55, 3744-3748.
(12) (a) Alberti, A.; Bonini, B. F.; Pedulli, G. F. Tetrahedron Lett.
1987, 28, 3737-3740. (b) Alberti, A.; Benaglia, M.; Bonini, B. F.;
Pedulli, G. F. J . Chem. Soc., Faraday Trans. 1 1988, 84, 3347-3358.
(c) Alberti, A.; Benaglia, M.; Vismara, E. Res. Chem. Intermed. 1989,
11, 117-126.
(13) (a) Bonini, B. F.; Comes-Franchini, M.; Mazzanti, G.; Ricci, A.;
Rosa-Fauzza, C.; Zani, P. Tetrahedron 1996, 52, 4803-4816. (b) Bonini,
B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. Tetra-
hedron Lett. 1994, 35, 9227-9228. (c) Bonini, B. F.; Comes-Franchini,
M.; Fochi, M.; Mazzanti, G.; Peri, F.; Ricci, A. J . Chem. Soc., Perkin
Trans. 1 1995, 2039-2044. (d) Bonini, B. F.; Comes-Franchini, M.;
Fochi, M.; Mazzanti, G.; Ricci, A. Tetrahedron 1997, 53, 7897-7910.
(14) (a) Degl’Innocenti, A.; Scafato, P.; Capperucci, A.; Bartoletti,
L.; Spezzacatena, C.; Ruzziconi, R. Synlett 1997, 361. (b) Ricci, A.;
Degl’Innocenti, A.; Capperucci, A.; Reginato, G. J . Org. Chem. 1989,
54, 19-20.
(7) Bonini, B. F.; Maccagnani, G.; Mazzanti, G.; Atwa, A. I. A.; Zani,
P. Heterocycles 1990, 31, 47-57.
(8) (a) Bonini, B. F.; Lenzi, A.; Maccagnani, G.; Barbaro, G.;
Giorgianni, P.; Macciantelli, D. J . Chem. Soc., Perkin Trans. 1 1987,
2643-2646. (b) Bonini, B. F.; Mazzanti, G.; Zani, P.; Maccagnani, G.
J . Chem. Soc. Chem. Commun. 1988, 365-367. (c) Bonini, B. F.; Busi,
F.; de Laet, R. C.; Mazzanti, G.; Thuring, J . W. J . F.; Zani, P.;
Zwanenburg, B. J . Chem. Soc., Perkin Trans. 1 1993, 1011-1018.
(9) (a) Carisi, P.; Mazzanti, G.; Zani, P.; Barbaro, G.; Battaglia, A.;
Giorgianni, P. J . Chem. Soc., Perkin Trans. 1 1987, 2647-2651. (b)
Bonini, B. F.; Masiero, S.; Mazzanti, G.; Zani, P. Tetrahedron Lett.
1991, 32, 2971-2974.
(15) Degl’Innocenti, A.; Capperucci, A.; Scafato, P.; Mecca, T.;
Reginato, G.; Mordini, A. Synlett 1999, 1739.
(16) Katritzky, A. R.; Lang, H.; Wang, Z.; Lie, Z. J . Org. Chem. 1996,
61, 7551.
(10) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.;
Ricci, A.; Zani, P. J . Chem. Soc., Perkin Trans. 1 1995, 2039-2044.
10.1021/jo0011585 CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/07/2000