9497
for efficient DNA cleavage.19 With the synthesis of the bithiazole ester analogue 1, we have
shown that the replacement of the threonine–bithiazole amide with a depsipeptide ester linkage
does not effect the properties (Fig. 3) and does not alter the linker domain’s ability to adopt the
decisive compact DNA bound conformation. The absence of a substantial change in cleavage
efficiency and sequence selectivity indicates that neither the conformational or H-bond proper-
ties of the threonine–bithiazole amide nitrogen are critical.
Acknowledgements
We gratefully acknowledge the financial support of the National Institutes of Health
(CA42056, D.L.B.) and the Skaggs Institute for Chemical Biology.
References
1. Umezawa, H.; Maeda, K.; Takeuchi, T.; Okami, Y. J. Antibiot. 1966, 19, 200.
2. Kane, S. A.; Hecht, S. M. In Progress in Nucleic Acids Research and Molecular Biology; Cohn, W. E.; Moldave,
K., Eds.; Academic: San Diego, 1994; Vol. 49, p. 313.
3. Ohno, M.; Otsuka, M. In Recent Progress in the Chemical Synthesis of Antibiotics; Lukacs, G.; Ohno, M., Eds.;
Springer-Verlag: New York, 1990; p. 387.
4. Dedon, P. C.; Goldberg, I. H. Chem. Res. Toxicol. 1992, 5, 311.
5. Petering, D. H.; Byrnes, R. W.; Antholine, W. E. Chem. Biol. Interact. 1990, 73, 133.
6. Stubbe, J.; Kozarich, J. W. Chem. Rev. 1987, 87, 1107. Stubbe, J.; Kozarich, J. W.; Wu, W.; Vanderwall, D. E.
Acc. Chem. Res. 1996, 29, 322.
7. Hecht, S. M. J. Nat. Prod. 2000, 63, 158.
8. Sugiura, Y.; Takita, T.; Umezawa, H. Met. Ions Biol. Syst. 1985, 19, 81.
9. Twentyman, P. R. Pharmacol. Ther. 1983, 23, 417.
10. Povirk, L. F. In Molecular Aspects of Anti-Cancer Drug Action; Neidle, S.; Waring, M. J., Eds.; MacMillian:
London, 1983.
11. Umezawa, J. In Bleomycin: Current Status and New Developments; Carter, S. K.; Crooke, S. T.; Umezawa, H.,
Eds.; Academic: New York, 1978.
12. Bleomycin Chemotherapy; Sikic, B. I.; Rozencweig, M.; Carter, S. K., Eds.; Academic: Orlando, FL, 1985.
13. D’Andrea, A. D.; Haseltine, W. A. Proc. Natl. Acad. Sci. USA 1978, 75, 3608. Takeshita, M.; Grollman, A. P.;
Ohtsubo, E.; Ohtsubo, H. Proc. Natl. Acad. Sci. USA 1978, 75, 5983.
14. Magliozzo, R. S.; Peisach, J.; Ciriolo, M. R. Mol. Pharmacol. 1989, 35, 428.
15. Carter, B. J.; de Vroom, E.; Long, E. C.; van der Marel, G. A.; van Boom, J. H.; Hecht, S. M. Proc. Natl. Acad.
Sci. USA 1990, 87, 9373. Hecht, S. M. Bioconjugate Chem. 1994, 5, 513.
16. Takita, T.; Muraoka, Y.; Nakatani, T.; Fujii, A.; Umezawa, Y.; Naganawa, H.; Umezawa, H. J. Antibiot. 1978,
31, 801.
17. Umezawa, H. Pure Appl. Chem. 1971, 28, 665.
18. Boger, D. L.; Cai, H. Angew. Chem., Int. Ed. 1999, 38, 448 and references cited therein.
19. Boger, D. L.; Ramsey, T. M.; Cai, H.; Hoehn, S. T.; Stubbe, J. J. Am. Chem. Soc. 1998, 120, 9139. Boger, D.
L.; Ramsey, T. M.; Cai, H.; Hoehn, S. T.; Stubbe, J. J. Am. Chem. Soc. 1998, 120, 9149.
20. Boger, D. L.; Teramoto, S.; Cai, H. Bioorg. Med. Chem. 1997, 5, 1577.
21. Boger, D. L.; Honda, T.; Menezes, R. F.; Colletti, S. L.; Dang, Q.; Yang, W. J. Am. Chem. Soc. 1994, 116, 82.
22. All intermediates and final compounds were characterized by IR, NMR, and HRMALDI FTMS. Spectroscopic
data for 1: Rf=0.08 (SiO2, 10:9:1 CH3OH–10% aqueous CH3CO2NH4–10% aqueous NH4OH); [h]2D5 −20.7 (c
1
0.29, CH3OH); H NMR (CD3OD, 400 MHz) l 8.86 (s, 1H), 8.22 (s, 2H), 7.57 (s, 1H), 5.42 (d, J=4.4 Hz, 1H),
4.78 (d, J=9.2 Hz, 1H), 4.68 (dd, J=1.9, 4.7 Hz, 1H), 4.60 (d, J=6.1 Hz, 1H), 4.8 (d, J=6.1 Hz, 1H), 4.46 (d,
J=1.6 Hz, 1H), 4.51 (m, 1H), 3.70 (m, 2H), 3.60 (t, J=9.6 Hz, 2H), 3.46 (t, J=3.0 Hz, 2H), 3.40 (t, J=3.6 Hz,