90% yield by transesterification of 10a (EtOH, KF, reflux, 3
days). Diol 12 was also formed as the major product in 75%
yield.
The above results prompted us to differentiate the two ester
groups as in the pioneering Winterfeldt synthesis of camptothe-
cin from a closely related tetracyclic substrate.13 Thus, we
focused our attention on tetracycle 10b, which was prepared by
reaction of pyridinium triflate 7 with the enolate derived from
isopropyl a-(methylsulfanyl)butyrate, followed by DDQ oxida-
tion (50% overall yield from 1) and subsequent radical
cyclization (65% yield). Gratifyingly, treatment of 10b with
DIBAL–hexanes in DME at 270 °C and then with NaBH4 in
isopropanol afforded a 1+1 mixture of the target lactone 11
(20-deoxycamptothecin)5a and lactol 13 (65% yield), which
were easily separated by column chromatography. The conver-
sion of lactol 13 into 11 (65% yield) has recently been
reported.5n Taking into account that 20-deoxycamptothecin
(11) has previously been converted by hydroxylation at C-20
either to racemic (Me2NH, CuCl2, O2, DMF)5a or natural
[(+)-(20S)]-camptothecin [LHDMS, THF, (+)-(2R,8aS)-(cam-
phorylsulfonyl)oxaziridine],5m the above synthesis constitutes a
formal total synthesis of this natural product.
‘Comissionat per a Universitats i Recerca’ (Generalitat de
Catalunya) for Grant 1999SGR00079 and for a fellowship to
C. J.
Notes and references
1 C. R. Hutchinson, Tetrahedron, 1981, 37, 1047.
2 M. E. Wall, M. C. Wani, C. E. Cook, K. H. Palmer, A. T. McPhail and
G. A. Sim, J. Am. Chem. Soc., 1966, 88, 3888.
3 Y. Fan, J. N. Weinstein, K. W. Kohn, L. M. Shi and Y. Pommier, J. Med.
Chem., 1998, 41, 2216, and references cited therein.
4 For synthetic references up to 1992, see: J. C. Cai and C. R. Hutchinson,
in Indoles, The Monoterpenoid Indole Alkaloids, ed. J. E. Saxton, in The
Chemistry of Heterocyclic Compounds, ed. A. Weissberger and E. C.
Taylor, Wiley, New York, 1983, vol. 25, part 4, p. 753; M. E. Wall and
M. C. Wani, in Monoterpenoid Indole Alkaloids, ed. J. E. Saxton, in The
Chemistry of Heterocyclic Compounds, ed. E. C. Taylor, Wiley,
Chichester, 1994, vol. 25, suppl. to part 4, p. 689.
5 For recent syntheses of camptothecin, see: (a) W. Shen, G. A. Coburn,
W. G. Bornmann and S. J. Danishefsky, J. Org. Chem., 1993, 58, 611;
(b) A. V. Rama Rao, J. S. Yadav and M. Valluri, Tetrahedron Lett.,
1994, 35, 3613; (c) F. G. Fang, S. Xie and M. W. Lowery, J. Org. Chem.,
1994, 59, 6142; (d) D. L. Comins, H. Hong, J. K. Saha and G. Jianhua,
J. Org. Chem., 1994, 59, 5120; (e) D. L. Comins, H. Hoang and G.
Jianhua, Tetrahedron Lett., 1994, 35, 5331; (f) D. L. Comins and J. K.
Saha, Tetrahedron Lett., 1995, 36, 7995; (g) S. Jew, K. Ok, H. Kim,
M. G. Kim, J. M. Kim, J. M. Hah and Y. Cho, Tetrahedron: Asymmetry,
1995, 6, 1245; (h) J. M. D. Fortunak, J. Kitteringham, A. R. Mastrocola,
M. Mellinger, N. J. Sisti, J. L. Wood and Z.-P. Zhuang, Tetrahedron
Lett., 1996, 37, 5683; (i) N. Murata, T. Sugihara, Y. Kondo and T.
Sakamoto, Synlett, 1997, 298; (j) M. A. Ciufolini and F. Roschangar,
Tetrahedron, 1997, 53, 11049; (k) S. P. Chavan and M. S. Venkatraman,
Tetrahedron Lett., 1998, 39, 6745; (l) H. Josien, S.-B. Ko, D. Bom and
D. P. Curran, Chem. Eur. J., 1998, 4, 67; (m) K. Tagami, N. Nakazawa,
S. Sano and Y. Nagao, Heterocycles, 2000, 53, 771; (n) R. T. Brown, L.
Jianli and C. A. M. Santos, Tetrahedron Lett., 2000, 41, 859.
6 For a review, see J. Bosch and M.-L. Bennasar, Synlett, 1995, 587. For
more recent work, see: M.-L.Bennasar, B. Vidal and J. Bosch, J. Org.
Chem., 1997, 62, 3597; M.-L. Bennasar, J.-M. Jime´nez, B. Vidal, B. A.
Sufi and J. Bosch, J. Org. Chem., 1999, 64, 9605.
The above results significantly expand the methodology for
the synthesis of nitrogen compounds based on the addition of
carbon nucleophiles to N-alkyl-3-acylpyridinium salts as they
open new synthetic possibilities for the subsequent elaboration
of the initially formed 1,4-dihydropyridine adducts.
Financial support from the DGICYT, Spain (project PB94-
0214) is gratefully acknowledged. Thanks are also due to the
7 Y. Ban, R. Sakaguchi and M. Nagai, Chem. Pharm. Bull., 1965, 18, 931;
A. P. Dobbs, K. Jones and K. T. Veal, Tetrahedron Lett., 1997, 38, 5833.
See also J. A. Vega, J. J. Vaquero, J. Alvarez-Builla, J. Exquerra and C.
Hamdouchi, Tetrahedron, 1999, 55, 2317.
8 Prepared from 2-fluoropyridine and ClCO2Me according to the
procedure reported by T. Gu¨ngo¨r, F. Marsais and G. Queguiner,
J. Organomet. Chem., 1981, 215, 139.
9 M.-L. Bennasar, E. Zulaica, C. Juan, L. Llauger and J. Bosch,
Tetrahedron Lett., 1999, 40, 3961.
10 All new compounds were fully characterized by spectroscopic analysis
(NMR) and gave satisfactory HRMS and/or combustion data.
11 Prepared by iodine–bromine exchange of 2-bromo-3-(bromomethyl)-
quinoline D. L. Comins, M. F. Baevsky and H. Hong, J. Am. Chem. Soc.,
1992, 114, 10971.
12 For the radical arylation of 2-pyridones, see R. Nadin and T. Harrison,
Tetrahedron Lett., 1999, 40, 4073. See also reference 5e.
13 E. Winterfeldt, T. Korth, D. Pike and M. Boch, Angew. Chem., Int. Ed.
Engl., 1972, 11, 289; K. Krohn and E. Winterfeldt, Chem. Ber., 1975,
108, 3030.
Scheme 2 Synthesis of (±)-20-deoxycamptothecin. Reagents and condi-
tions: i, AgOTf, CH2Cl2, rt, 45 min; ii, CH2Cl2, rt, 1 h; iii, methyl or
isopropyl a-(methylsufanyl)butyrate, LDA, THF, 270 °C, then 240 to
210 °C, 1.5 h; iv, DDQ, 3+1 THF–MeOH, rt, 12 h; v, TTMSS (2 equiv.),
AIBN, C6H6, reflux, 4 h; vi, DIBAL–hexane (3 equiv.), DME, 270 °C, 30
min, then NaBH4, iPrOH, rt, 1 h.
2460
Chem. Commun., 2000, 2459–2460