N A T UR E C O M M UN I CA T I O NS | D OI : 1 0. 1 0 3 8 / s 4 1 46 7 - 01 7 - 02 16 8 - x
A R T I C L E
March from 2015 and 2016. Harvested paddy rice was dried and stored at room
temperature for at least 3 months before measurement. 100 fully filled grains were
randomly selected and weight within each line with three repeats. The values were
averaged and used as the measurements for hundred-grain weight.
25. Nakatsuka, T. et al. Cloning and characterization of the UDP-glucose:
anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J. Exp.
Bot. 59, 1241–1252 (2008).
26. Yonekura-Sakakibara, K. et al. A flavonoid 3-O-glucoside: 2”-O-
glucosyltransferase responsible for terminal modification of pollen-specific
flavonols in Arabidopsis thaliana. Plant J. 19, 769–782 (2014).
27. Tohge, T. et al. Functional genomics by integrated analysis of metabolome and
transcriptome of Arabidopsis plants over-expressing an MYB transcription
factor. Plant J. 42, 218–235 (2005).
Data availability. The authors declare that all data supporting the findings of this
study are available within the manuscript and its supplementary information files
or are available from the corresponding author upon request.
28. Jones, P. et al. UGT73C6 and UGT78D1, glycosyltransferases involved in
flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 278,
43910–43918 (2003).
Received: 26 June 2017 Accepted: 10 November 2017
29. Yonekura-Sakakibara, K., Tohge, T., Niida, R. & Saito, K. Identification of a
flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in
Arabidopsis by transcriptome coexpression analysis and reverse genetics. J.
Biol. Chem. 282, 14932–14941 (2007).
30. Yonekura-Sakakibara, K. et al. Comprehensive flavonol profiling and
transcriptome coexpression analysis leading to decoding gene-metabolite
correlations in Arabidopsis. Plant Cell. 20, 2160–2176 (2008).
31. Saito, K. et al. The flavonoid biosynthetic pathway in Arabidopsis: structural
and genetic diversity. Plant Physiol. Biochem. 72, 21–34 (2013).
32. Martens, S. & Mithofer, A. Flavones and flavone synthases. Phytochemistry 66,
2399–2407 (2005).
References
1. Banks, J. A. et al. The Selaginella genome identifies genetic changes associated
with the evolution of vascular plants. Science 332, 960–963 (2011).
2. Weng, J. K., Philippe, R. N. & Noel, J. P. The rise of chemodiversity in plants.
Science 336, 1667–1670 (2012).
3. Boutanaev, A. M. et al. Investigation of terpene diversification across multiple
sequenced plant genomes. Proc. Natl Acad. Sci. USA 112, 81–88 (2015).
4. Dixon, R. A. & Paiva, N. L. Stress-induced phenylpropanoid metabolism. Plant
Cell 7, 1085–1097 (1995).
33. Zhou, J. M. & Ibrahim, R. K. Tricin—a potential multifunctional nutraceutical.
Phytochem. Rev. 9, 413–424 (2010).
34. Chen, W. et al. A novel integrated method for large-scale detection,
identification, and quantification of widely targeted metabolites: application in
the study of rice metabolomics. Mol. Plant 6, 1769–1780 (2013).
35. Lan, W. et al. Tricin, a flavonoid monomer in monocot lignification. Plant
Physiol. 167, 1284–1295 (2015).
36. Chen, W. et al. Genome-wide association analyses provide genetic and
biochemical insights into natural variation in rice metabolism. Nat. Genet. 46,
714–721 (2014).
37. Chen, W. et al. Comparative and parallel genome-wide association studies for
metabolic and agronomic traits in cereals. Nat. Commun. 7, 12767 (2016).
38. Li, M. X., Gui, H. S., Kwan, J. S. & Sham, P. C. GATES: a rapid and powerful
gene-based association test using extended Simes procedure. Am. J. Hum.
Genet. 88, 283–293 (2011).
5. Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics,
biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493 (2001).
6. Taylor, L. P. & Grotewold, E. Flavonoids as developmental regulators. Curr.
Opin. Plant Biol. 8, 317–323 (2005).
7. Li, J. et al. Arabidopsis flavonoid mutants are hypersensitive to UV-B
irradiation. Plant Cell 5, 171–179 (1993).
8. Bieza, K. & Lois, R. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels
shows constitutively elevated accumulation of flavonoids and other phenolics.
Plant Physiol. 126, 1105–1115 (2001).
9. Mohammed, A. R. & Tarpley, L. Differential response of southern US Rice
(Oryza sativa L.) cultivars to ultraviolet-B radiation. J. Agron. Crop Sci. 196,
286–295 (2010).
10. Tohge, T. & Fernie, A. R. Leveraging natural variance towards enhanced
understanding of phytochemical sunscreens. Trends Plant Sci. 22, 308–315
(2017).
39. Zhao, H. et al. RiceVarMap: a comprehensive database of rice genomic
variations. Nucleic Acids Res. 43, D1018–1022 (2015).
40. Edwards, S. J., Soudackov, A. V. & Hammesschiffer, S. Impact of distal
mutation on hydrogen transfer interface and substrate conformation in
Soybean Lipoxygenase. J. Phys. Chem. B. 114, 6653–6660 (2010).
41. Jiménez-Osés, G. et al. The role of distant mutations and allosteric regulation
on LovD active site dynamics. Nat. Chem. Biol. 10, 431–436 (2014).
42. Pollastri, S. & Tattini, M. Flavonols: old compounds for old roles. Ann. Bot.
108, 1225–1233 (2011).
11. Ross, J. A. & Kasum, C. M. Dietary flavonoids: bioavailability, metabolic effects,
and safety. Annu. Rev. Nutr. 22, 19–34 (2002).
12. Chen, A. Y. & Chen, Y. C. A review of the dietary flavonoid, kaempferol on
human health and cancer chemoprevention. Food Chem. 138, 2099–2107
(2013).
13. Lepiniec, L. et al. Genetics and biochemistry of seed flavonoids. Annu. Rev.
Plant Biol. 57, 405–430 (2006).
43. Nakabayashi, R. et al. Metabolomics-oriented isolation and structure
elucidation of 37 compounds including two anthocyanins from Arabidopsis
thaliana. Phytochemistry 70, 1017–1029 (2009).
44. Tohge, T. et al. Characterization of a recently evolved flavonol-
phenylacyltransferase gene provides signatures of natural light selection in
Brassicaceae. Nat. Commun. 7, 12399 (2016).
45. Koti, S. et al. Effects of carbon dioxide, temperature and ultraviolet-B radiation
and their interactions on soybean (Glycine max L.) growth and development.
Environ. Exp. Bot. 60, 1–10 (2007).
46. Angelovici, R. et al. Genome-wide analysis of branched-chain amino acid levels
in Arabidopsis seeds. Plant Cell 25, 4827–4843 (2013).
47. Quadrana, L. et al. Natural occurring epialleles determine vitamin E
accumulation in tomato fruits. Nat. Commun. 5, 3027 (2014).
48. Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary
significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).
49. Scossa, F. et al. Genomics-based strategies for the use of natural variation in the
improvement of crop metabolism. Plant Sci. 242, 47–64 (2016).
50. Kliebenstein, D. J. et al. Genetic control of natural variation in Arabidopsis
glucosinolate accumulation. Plant Physiol. 126, 811–825 (2001).
51. Chan, E. K., Rowe, H. C., Corwin, J. A., Joseph, B. & Kliebenstein, D. J.
Combining genome-wide association mapping and transcriptional networks to
identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS
Biol. 9, e1001125 (2011).
52. Pfalz, M., Vogel, H. & Kroymann, J. The gene controlling the indole
glucosinolate modifier1 quantitative trait locus alters indole glucosinolate
structures and aphid resistance in Arabidopsis. Plant Cell. 21, 985–999 (2009).
53. Matsuda, F. et al. Dissection of genotype-phenotype associations in rice grains
using metabolome quantitative trait loci analysis. Plant J. 70, 624–636 (2012).
54. Matsuda, F. et al. Metabolome-genome-wide association study dissects genetic
architecture for generating natural variation in rice secondary metabolism.
Plant J. 81, 13–23 (2015).
14. Yonekura-Sakakibara, K. & Saito, K. Function, structure, and evolution of
flavonoid glycosyltransferases in plants. Recent Adv. Polyphen. Res. 4, 61–82 (2014).
15. Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments:
anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).
16. Pang, Y. et al. A transcript profiling approach reveals an epicatechin-specific
glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc.
Natl Acad. Sci. USA 105, 14210–14215 (2008).
17. Zhao, J. & Dixon, R. A. MATE transporters facilitate vacuolar uptake of
epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago
truncatula and Arabidopsis. Plant Cell 21, 2323–2340 (2009).
18. Frydman, A. et al. Citrus fruit bitter flavors: isolation and functional
characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase,
a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 40,
88–100 (2004).
19. Scharbert, S. & Hofmann, T. Molecular definition of black tea taste by means of
quantitative studies, taste reconstitution, and omission experiments. J. Agr.
Food Chem. 53, 5377–5384 (2005).
20. Bowles, D., Lim, E. K., Poppenberger, B. & Vaistij, F. E. Glycosyltransferases of
lipophilic small molecules. Annu. Rev. Plant Biol. 57, 567–597 (2006).
21. Matsuba, Y. et al. A novel glucosylation reaction on anthocyanins catalyzed by
acyl-glucose-dependent glucosyltransferase in the petals of carnation and
delphinium. Plant Cell 22, 3374–3389 (2010).
22. Luang, S. et al. Rice Os9BGlu31 is a transglucosidase with the capacity to
equilibrate phenylpropanoid, flavonoid, and phytohormone glycoconjugates. J.
Biol. Chem. 288, 10111–10123 (2013).
23. Ishihara, H. et al. Natural variation in flavonol accumulation in Arabidopsis is
determined by the flavonol glucosyltransferase BGLU6. J. Exp. Bot. 67,
1505–1517 (2016).
24. Mackenzie, P. I. et al. The UDP glycosyltransferase gene superfamily:
recommended nomenclature update based on evolutionary divergence.
Pharmacogenetics 7, 255–269 (1997).
N
A
T
U
R
E
C
OM
M
U
N
I
C
A
T
I
O
N
S
8
:
1
9
7
5
D
O
I
:
1
0
.
1
0
3
8
/
s
4
1
46
7
-
0
1
7
-
0
2
1
6
8
-
x
|
|
|