ChemComm
DOI: 10.1039/C5CC00P35a4gGe 4 of 4
3
For selected examples on C–H activation by using N–OR groups as
N. Cramer, Angew. Chem., Int. Ed., 2014, 53, 7896; (l)X. G. Li, M.
Sun, K. Liu, Q. Jin and P. N. Liu, Chem. Commun., 2015, DOI:
ODGs, see: (a) J. Wu, X. Cui, L. Chen, G. Jiang and Y. Wu, J. Am.
Chem. Soc., 2009, 131, 13888; (b) S. Rakshit, C. Grohmann, T.
Besset and F. Glorius, J. Am. Chem. Soc., 2011, 133, 2350; (c) T. K.
Hyster and T. Rovis, Chem. Commun., 2011, 47, 11846; (d) X.
Zhang, D. Chen, M. Zhao, J.Zhao, A. Jia and X. Li, Adv. Synth.
Catal., 2011, 353, 719; (e) N. Guimond, S. I. Gorelsky and K.
Fagnou, J. Am. Chem. Soc., 2011, 133, 6449; (f) C. Kornhaaβ, J. Li
and L. Ackermann, J. Org. Chem., 2012, 77, 9190; (g) H. Wang and
F. Glorius, Angew. Chem., Int. Ed., 2012, 51, 7318; (h) T. K. Hyster,
K L. Knörr, T. R. Ward and T. Rovis, Science, 2012, 338, 500; (i) H.
Wang, C. Grohmann, C. Nimphius and F. Glorius, J. Am. Chem.
Soc., 2012, 134, 19592; (j) B. Ye and N. Cramer, Science, 2012, 338,
504; (k) T. K. Hyster, K. E. Ruhl and T. Rovis, J. Am. Chem. Soc.,
2013, 135, 5364; (l) S. Cui, Y. Zhang, D. Wang and Q. Wu, Chem.
Sci., 2013, 4, 3912; (m) X. Huang, J. Huang, C. Du,; X. Zhang, F.
Song and J. You, Angew. Chem., Int. Ed., 2013, 52, 12970; (n) U.
D. Zhao, F. Lied and F. Glorius, Chem. Sci., 2014, 5, 2869; (p) D. G.
Yu, F. de Azambuja, T. Gensch, C. G. Daniliuc and F. Glorius,
Angew. Chem., Int. Ed., 2014, 53, 9650; (q) X. Zhang, Z. Qi and X.
Li, Angew. Chem., Int. Ed., 2014, 53, 10794; (r) J. M. Neely and T.
Rovis, J. Am. Chem. Soc., 2014, 136, 2735; (s) Y. J. Liu, H. Xu. W.
J. Kong, M. Shang, H. X. Dai and J. Q. Yu, Nature, 2014, 515, 389.
For selected examples on C–H activation by using N–NR groups as
ODGs, see: (a) D. Zhao, Z. Shi and F. Glorius, Angew. Chem., Int.
Ed., 2013, 52, 12426; (b) C. Wang and Y. Huang, Org. Lett., 2013, 100
15, 5294; (c) B. Liu, C. Song, C. Sun, S. Zhou and J. Zhu, J. Am.
Chem. Soc., 2013, 135, 16625; (d) C. Wang, H. Sun, Y. Fang and Y.
Huang, Angew. Chem., Int. Ed., 2013, 52, 5795; (e) L. Zheng and R.
Hua, Chem. −Eur. J., 2014, 20, 2352; (f) K. Muralirajan, C. H.
Cheng, Adv. Synth. Catal., 2014, 356, 1571; (g) T. Matsuda and Y.
Tomaru, Tetrahedron Lett., 2014, 55, 3302; (h) Z. Zhang, H. Jiang
and Y. Huang, Org. Lett., 2014, 16, 5976; (i) H. Sun, C.Wang, Y. F.
Yang, P. Chen, Y. D. Wu, X. Zhang and Y. Huang, J. Org. Chem.,
2014, 79, 11863; (j) B. Zhou, J. Du, Y.Yang and Y. Li, Chem. −Eur.
J., 2014, 20, 12768; (k) B. Zhou, Y. Yang, H. Tang, J. Du, H. Feng
and Y. Li, Org. Lett., 2014, 16, 3900.
75
10.1039/c4cc09314c; (m) J. Shi, Y. Yan, Q. Li, H. E. Xu and W. Yi,
Chem. Commun., 2014, 50, 6483; (n) J. Shi, J. Zhou, Y. Yan, J. Jia,
X. Liu, H, Song, H. E. Xu and W. Yi, Chem. Commun., 2015, 51,
668.
5
10
15
20
80 8
For the representative examples, see: (a) N. Guimond and K.
Fagnou, J. Am. Chem. Soc., 2009, 131, 12050; (b) D. R. Stuart, P.
Alsabeh, M. Kuhn and K. Fagnou, J. Am. Chem. Soc., 2010, 132,
18326; (c) D. J. Schipper, M. Hutchinson and K. Fagnou, J. Am.
Chem. Soc., 2010, 132, 6910; (d) M. P. Huestis, L. Chan, D. R.
Stuart and K. Fagnou, Angew. Chem., Int. Ed., 2011, 50, 1338; (e) J.
Shi, B. Zhou, Y. Yang and Y. Li, Org. Biomol. Chem., 2012, 10,
8953; (f) W. Zhen, F. Wang, M. Zhao, Z. Du and X. Li, Angew.
Chem. Int. Ed., 2012, 51, 11819; (g) Y. Chen, F. Wang, W. Zhen, X.
Li, Adv. Synth. Catal., 2013, 355, 353; (h) D. S. Kim, J. W. Park and
C. H. Jun, Adv. Synth. Catal., 2013, 355, 2667; (i) T. Gong, B. Xiao,
W. Cheng, W. Su, J. Xu, Z. Liu, L. Liu and Y. Fu, J. Am. Chem.
Soc., 2013, 135, 10630; (j) Y. Lian, J. R. Hummel, R. G. Bergman, J.
A. Ellman, J. Am. Chem. Soc., 2013, 135, 12548; (k) K. Nobushige,
K. Hirano, T. Satoh and M. Miura, Org. Lett., 2014, 16, 1188; (l) D.
G. Yu, F. de Azambuja and F. Glorius, Angew. Chem., Int. Ed.,
2014, 53, 2754.
85
90
95
9
Ethyl diazoacetoacetate and methyl 2-diazo-2-phenylacetate were
also tested. The results showed that the reaction of ethyl
diazoacetoacetate or methyl 2-diazo-2-phenylacetate and MeOH
was occurred to give ethyl 2-methoxy-3-oxobutanoate (trace) and
25 4
methyl 2-methoxy-2-phenylacetate
(58% isolated yield),
respectively, where substrate 1a was retained perfectly with over 95%
30
recovery rate.
OMe
N2
Me
O
Me
COOEt
(trace)
COOEt
[Cp*Rh(MeCN)3][SbF6]2
(5 mol%)
O
H
O
(0.12 mmol)
N
O
H
or
OMe
or
MeOH, 10 h, RT
N2
1a
35
COOMe
(58% yield)
(0.10 mmol)
COOMe
(0.12 mmol)
>95% recovery of 1a
105 10 For selected rhodium involved cleavage of aromatic C–H bonds
through CMD way, see: (a) T. K. Hyster and T. Rovis, J. Am. Chem.
Soc., 2010, 132, 10565; (b) L. Ackermann, Chem. Rev., 2011, 111,
1315; (c) H. Wang and F. Glorius, Angew. Chem., Int. Ed., 2012, 51,
7318; (d) J. Zheng and S. L. You, Chem. Commun., 2014, 50, 8204.
110 11 (a) K. B. Eisenthal, N. J. Turro, E. V. Sitzmann, I. R. Gould, G.
Hefferon, J. Langan and Y. Cha, Tetrahedron, 1985, 41, 1543; (b) D.
A. Modarelli, S. Morgan and M. S. Platz, J. Am. Chem.
Soc., 1992, 114, 7034; (c) V. V. Shevchenko, N. G. Zhegalova, A. O.
Borzenko and V. A. Nikolaev, Helv. Chem. Acta, 2008, 91, 501. (d)
W. S. Jenks, M. J. Heying and E. M. Rockafellow, Org. Lett., 2009,
11, 955; (e) P. J. Davis, L. Harris, A. Karim, A. L. Thompson, M.
Gilpin, M. G. Moloney, M. J. Pound and C. Thompson, Tetrahedron
Lett., 2011, 52, 1553.
5
For selected examples on C–H activation by using O–NAc group as
a ODG, see: (a) G. Liu, Y. Shen, Z. Zhou and X. Lu, Angew. Chem.,
Int. Ed., 2013, 52, 6033; (b) Y. Shen, G. Liu, Z. Zhou and X. Lu,
Org. Lett., 2013, 15, 3366; (c) F. Hu, Y. Xia, F. Ye, Z. Liu, C. Ma,
Y. Zhang and J. Wang, Angew. Chem., 2014, 126, 1388; (d) H.
Zhang, K. Wang, B. Wang, H. Yi, F. Hu, C. Li, Y. Zhang and J.
Wang, Angew. Chem., Int. Ed., 2014, 53, 13234; (e) P. Duan, X.
Lan, Y. Chen, S. S. Qian, J. J. Li, L. Lu, Y. Lu, B. Chen, M. Hong
and J. Zhao, Chem. Commun., 2014, 50, 12135; (f) Y. Chen, D.
Wang, P. Duan, R. Ben, L. Dai, X. Shao, M. Hong, J. Zhao and Y.
Huang, Nat. Commun., 2014, 5, 4610.
For selected reviews, see: (a) Z. Zhang and J. Wang, Tetrahedron,
2008, 64, 6577; (b) H. M. L. Davies and J. R. Manning, Nature,
2008, 451, 417; (c) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou,
40
45
115
50 6
12 (a) A. Closse, W. Haefliger and D. Hauser, J. Med. Chem., 1981, 24,
1465; (b) W. D. Inman, J. Luo, S. D. Jolad, S.R. King and R.
Cooper, J. Nat. Prod., 1999, 62, 1088; (c) M. L. Garduño-Ramírez,
A. Trejo, V. Navarro, R. Bye, E. Linares and G. Delgado, J. Nat.
Prod., 2001, 64, 432; (d) G. D. Huang, Y. J. Yang, W. S. Wu and Y.
Zhu, J. Nat. Prod., 2010, 73, 1954; (e) L. J. Wang, J. Xiong, S. T.
Liu and J. F. Hu, Chem. Biodivers., 2014, 11, 919.
Chem. Rev. 2010, 110, 704; (d) Y. Zhang and J. Wang, Eur. J. Org.
120
Chem. 2011, 1015; (e) J. Barluenga and C. Valdés, Angew. Chem.,
Int. Ed., 2011, 50, 7486; (f) Z. Shao and H. Zhang, Chem. Soc. Rev.,
2012, 41, 560; (g) Q. Xiao, Y. Zhang and J. Wang, Acc. Chem. Res.,
2013, 46, 236; (h) Z. Liu and J. Wang, J. Org. Chem., 2013, 78,
55
10024; (i) Y. Xia, Y. Zhang and J. Wang, ACS Catal., 2013, 3, 2586.
125
7
For representative examples on Rh(III)-catalyzed carbenoid C–H
Y. Yu, J. Am. Chem. Soc. 2012, 134, 13565; (b) Z. Shi, D. C.
Koester, M. Boultadakis-Arapinis and F. Glorius, J. Am. Chem. Soc.,
2013, 135, 12204; (c) X. Yu, S. Yu, J. Xiao, B. Wan and X. Li, J.
Org. Chem., 2013, 78, 5444; (d) S. Yu, S. Liu, Y. Lan, B. Wan and
X. Li, J. Am. Chem. Soc., 2015, DOI: 10.1021/ja511796h; (e) Y.
Zhang, J. Zheng and S. Cui, J. Org. Chem., 2014, 79, 6490; (f) H. W.
Lam, K. Y. Man, W. W. Chan, Z. Zhou and W. Y. Yu, Org. Biomol.
Chem., 2014, 12, 4112; (g) Y. Liang, K. Yu, B. Li, S. Xu, H. Song
and B. Wang, Chem. Commun., 2014, 50, 6130; (h) F. Hu, Y. Xia, F.
Ye, Z. Liu, C. Ma, Y. Zhang and J. Wang, Angew. Chem., Int. Ed.,
2014, 53, 1364; (i) J. Jeong, P. Patel, H. Hwang and S. Chang, Org.
Lett., 2014, 16, 4598; (j) W. Ai, X. Yang, Y. Wu, X. Wang, Y. Li, Y.
Yang and B. Zhou, Chem. −Eur. J., 2014, 20, 17653; (k) B. Ye and
60
65
70
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]