KODURI ET AL.
5
at 600°C for 3 hours in a desiccator to get STO and stored
in the closed bottle until it was used.
Jagityal, and RGUKT Basar (IIIT Basar), Nirmal, India,
for support and encouragement during this research
work.
3.2 | Preparation of fully functionalized
pyridine derivatives
ORCID
Ramakanth Pagadala
Benzaldehyde (1 mmol), ethanol (3 mL), malononitrile
(1 mmol), cyclohexanone or methyl ethyl ketone
(2 mmol), and ammonium hydroxide (4 mL) were added
to a round‐bottom flask in the same sequence, refluxed
with a condenser and magnetically stirred. The reaction
mixture was heated at 70°C for the appropriate time men-
tioned in the Table 2. The progress of the reaction was
monitored by TLC (ethylacetate/n‐hexane = 4:6). After
completion of the reaction, the mixture was cooled and
extracted in ethyl acetate, filtered, and washed with
water, and STO was collected. The filtrate was dried over
anhydrous sodium sulfate, and the solvent was
completely removed. The obtained precipitate was recrys-
tallized in ethanol to get more pure aimed compound
(6a). The recycled STO was activated and reused for the
next cycle. Compound 6a; Light yellow solid: mp 226°C
REFERENCES AND NOTES
[1] J. A. Joule, K. Mills, Heterocyclic Chemistry, 5th ed., Wiley‐
Blackwell, Oxford, UK 2010.
[2] (a) F. Durola, J. P. Sauvage, O. S. Wenger, Chem. Commun.
2006, 171. (b) B. A. Sweetman, H. Muller‐Bunz, P. Guiry,
J. Tetrahedron Lett. 2005, 46, 4643. (c) V. N. Kozhevnikov, D.
N. Kozhevnikov, T. V. Nikitina, V. L. Rusinov, O. N.
Chupakhin, M. Zabel, B. Koenig, J. Org. Chem. 2003, 68, 2882.
[3] (a) B. Tang, F. Yu, P. Li, L. Tong, X. Duan, T. Xie, X. Wang,
J. Am. Chem. Soc. 2009, 131, 3016. (b) F. Havas, N. Leygue,
M. Danel, B. Mestre, C. Galaup, C. Picard, Tetrahedron 2009,
65, 7673. (c) B. P. Yan, C. C. C. Cheung, S. C. F. Kui, H. F.
Xiang, V. A. L. Roy, S.‐J. Xu, C.‐M. Che, Adv. Mater. 2007, 19,
3599. (d) C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev. 2000,
100, 3553.
1
to 227°C; H NMR (400 MHz, CDCl3) δ = 1.46‐1.51 (2H,
m), 1.70‐1.83 (4H, m), 2.45 (2H, t, J = 5.4 Hz), 2.93 (2H,
t, J = 5.5 Hz), 5.10 (2H, s, NH2), 7.22‐7.50 (5H, m); 13C
NMR (100 MHz, CDCl3): δ 26.17, 28.04, 28.96, 31.97,
39.66, 89.32, 116.93, 126.43, 128.37, 128.59, 128.67,
136.85, 153.12, 157.23, 167.95; IR (KBr, cm−1): 3315
(NH2), 2211 (CN); Mass spectra, m/z = 286 (M + Na,
100%); Anal. calc (C17H17N3): C 77.54, H 6.51, N 15.96
%. Found: C 77.62, H 6.49, N 15.98%.
[4] D. Yildiz, Toxicon. 2004, 43, 619.
[5] (a) N. S. Cutshall, K. A. Kucera, R. Ursion, J. Latham, N. C.
Ihle, Bioorg. Med. Chem. Lett. 2002, 12, 1517. (b) R. Ling, M.
Yoshida, P. S. Mariano, J. Org. Chem. 1996, 61, 4439.
[6] (a) B. C. H. May, J. A. Zorn, J. Witkop, J. Sherrill, A. C. Wal-
lace, G. Legname, S. B. Prusiner, F. E. Cohen, J. Med. Chem.
2007, 50, 65. (b) K. Guo, R. Mutter, W. Heal, T. K. R. Reddy,
H. Cope, S. Pratt, M. J. Thompson, B. Chen, Eur. J. Med. Chem.
2008, 43, 93. (c) M. T. Cocco, C. Congiu, V. Lilliu, V. Onnis,
Bioorg. Med. Chem. 2007, 15, 1859.
[7] T. Murata, M. Shimada, S. Sakakibara, T. Yoshino, H. Kadono,
T. Masuda, M. Shimazaki, T. Shintani, K. Fuchikami, K. Sakai,
H. Inbe, K. Takeshita, T. Niki, M. Umeda, K. B. Bacon, K. B.
Ziegelbauer, T. B. Lowinger, Bioorg. Med. Chem. Lett. 2003,
13, 913.
4 | CONCLUSION
In summary, we have successfully synthesized
multifunctionalized pyridines from the simple reagents
like benzaldehyde, malononitrile, ketones, and ammo-
nium hydroxide in the presence of catalyst STO. The
extra benefits of this protocol are huge scope, mild condi-
tions, easy operation, low price catalyst, good yield,
smooth regeneration of catalyst, and potential for reuse
with the same efficiency. This approach also provides
simple, green conditions and direct method for the syn-
thesis of target compound. In addition, exploration of
the sustainable applicability of the STO to the equated
and other reactions with divergent techniques like ultra-
sonic and electronic methods is presently underway.
[8] M. Mantri, O. De Graaf, J. Van Veldhoven, A. Göblyös, J. K.
Von Frijtag Drabbe Künzel, T. Mulder‐Krieger, R. Link, H.
De Vries, M. W. Beukers, J. Brussee, A. P. Ijzerman, J. Med.
Chem. 2008, 51, 4449.
[9] J. Deng, T. Sanchez, L. Q. Al‐Mawsawi, R. Dayam, R. A. Yunes,
A. Garofalo, M. B. Bolger, N. Neamati, Bioorg. Med. Chem.
2007, 15, 4985.
[10] (a) K. Shravan Kumar, P. Ramakanth, M. Suresh, V. Chandra
Sekhar, B. Sreekantha, J. RSC Advances 2015, 5, 105446. (b)
P. Ramakanth, K. Devendar Reddy, R. Surjyakanta, M. Suresh,
M. Brenda, B. J. Sreekantha, RSC Advances 2015, 5, 5627. (c) M.
Suresh, R. Surjyakanta, P. Ramakanth, K. Shravan Kumar, M.
Suryanarayana, B. J. Sreekantha, Cat. Comm. 2015, 61, 26. (d)
M. Suresh, P. Ramakanth, R. Surjyakantha, K. Shravan Kumar,
B. Sreekantha, J. Res. Chem. Interm. 2015, 41, 8269. (e) P.
Ramakanth, M. Suresh, B. J. Sreekantha, J. Het. Chem. 2015,
52, 1226. (f) P. Ramakanth, M. Suresh, R. Surjyakanta, B.
ACKNOWLEDGMENTS
The authors are thankful to the management of CVR Col-
lege of engineering, JNTUH College of Engineering,