Table 1 Binding constants of CRP to various receptors
Receptor
Detection method
Binding constant (KA, Mꢀ1
)
Ref.
Anti-CRP antibody (immobilized)
Anti-CRP antibody (immobilized)
Exposed PC on supported lipid monolayersa
PC-appended supramolecular assembly
The MIP in this study
SPR
Fiber-optic detection
SPR
ELISA
MSIA
1.4 ꢃ 106
3.8 ꢃ 108
9.9 ꢃ 106
7.1 ꢃ 106
3.0 ꢃ 109
9a
9b
9c
11
—
a
Rabbit CRP was used.
CRP concentration and the response from the MSIA-2 is
A and avidin, and the pentavalent serum amyloid P component,
Shiga and cholera toxins.3b,15,16
expressed as the following equation (ESIw):
This work was supported by the DGIST R&D Program
(11-NB-01) of the Ministry of Education, Science and Technology
of Korea.
C
R
C
1
¼
þ
ð1Þ
Rmax Rmax ꢂ KA
Notes and references
where R is the background-corrected absorbance (Abs405nm
)
1 (a) G. Wulff, Angew. Chem., Int. Ed. Engl., 1995, 34, 1812;
(b) K. Haupt and K. Mosbach, Chem. Rev., 2000, 100, 2495;
(c) B. Sellergren and C. J. Allender, Adv. Drug Delivery Rev.,
2005, 57, 1733.
2 (a) H. Q. Shi, W. B. Tsai, M. D. Garrison, S. Ferrari and
B. D. Ratner, Nature, 1999, 398, 593; (b) N. W. Turner,
C. W. Jeans, K. R. Brain, C. J. Allender, V. Hlady and
D. W. Britt, Biotechnol. Prog., 2006, 22, 1474; (c) K. Haupt, Chem.
Commun., 2003, 171; (d) M. J. Whitcombe, I. Chianella,
L. Larcombe, S. A. Piletsky, J. Noble, R. Porter and A. Horgan,
Chem. Soc. Rev., 2011, 40, 1547.
from the MSIA-2 with a CRP concentration of C, Rmax is the
absorbance when C is infinity, and KA is the apparent binding
constant. From the plot of Fig. 3 and eqn (1), the ratio of the
slope to the intercept gave the KA of (3.0 ꢁ 0.87) ꢃ 109 Mꢀ1
for CRP binding to the MIP. It is notable that the MIP films
could be used repeatedly for determination of CRP binding
after simple treatment with EDTA. The binding constant of
the MIP was comparable to that of the immobilized anti-CRP
and other synthetic receptors as shown in Table 1. Because of
denaturation and steric hindrance of antigen-recognition sites
by the random orientation and uncontrolled immobilization
density, the binding constant of immobilized antibodies to
antigens is known to range from 105 to 107 Mꢀ1, while their
soluble counterparts show approximately 1000-fold stronger
binding affinities.13,14 The exposed PC-containing lipids on
supported lipid monolayers would possess homogeneous binding
sites for CRP, but still suffer from the lateral diffusion that
reduces the binding efficiency. On the MIP surface, the PC
moieties were expected to be arranged in a regular manner in
terms of their fixed protrusion and distance, accounting for the
high binding constant.
A CRP level in the range between 1 to 5 mg Lꢀ1 is of clinical
importance as a predictor of cardiovascular risk.7 As the MIP
exhibited high binding affinity and selectivity for CRP, a direct
quantification of human serum CRP using the MSIA was
attempted. A serum CRP sample solution of 3.67 ꢁ 0.28 mg Lꢀ1
was prepared by dilution of the human CRP-positive serum
into binding buffer and the MSIA-1 measurements were
conducted with three separate MIP films. The CRP concen-
tration based on a calibration curve using standard CRP
solutions was calculated as 3.00 ꢁ 0.68 mg Lꢀ1 (R2 = 0.98).
In summary, the surface imprinting of CRP at the oil–water
interface has been carried out using a rationally designed
PC-containing polymerizable ligand. The MIP prepared under
mild and physiological conditions exhibited excellent selectivity
for template CRP over other serum proteins and a binding
affinity comparable to that of immobilized anti-CRP antibody.
Direct determination of CRP using MSIA was demonstrated,
which suggests the potential application of the MIP for the
sensitive detection of serum CRP. This imprinting approach
may be applicable to the preparation of the synthetic receptors
for other multivalent proteins such as the bivalent concanavalin
3 (a) X. Du, V. Hlady and D. W. Britt, Biosens. Bioelectron., 2005,
20, 2053; (b) H. Zheng and X. Du, J. Phys. Chem. B, 2009, 113, 11330.
4 T. Baumgart and A. Offenhausser, Biophys. J., 2002, 83, 1489.
¨
5 S. W. Jeong and D. F. O’Brien, J. Org. Chem., 2001, 66, 4799.
6 (a) J. E. Volanakis and J. F. Kearney, J. Exp. Med., 1981,
153, 1604; (b) D. Thompson, M. B. Pepys and S. P. Wood,
Structure, 1999, 7, 169.
7 E. T. H. Yeh and J. T. Willerson, Circulation, 2003, 107, 370.
8 M. B. Pepys, G. M. Hirschfield, G. A. Tennent, J. R. Gallimore,
M. C. Kahan, V. Bellotti, P. N. Hawkins, R. M. Myers,
M. D. Smith, A. Polara, A. J. A. Cobb, S. V. Ley,
J. A. Aquilina, C. V. Robinson, I. Sharif, G. A. Gray,
C. A. Sabin, M. C. Jenvey, S. E. Kolstoe, D. Thompson and
S. P. Wood, Nature, 2006, 440, 1217.
9 (a) M. H. F. Meyer, M. Hartmann and M. Keusgen, Biosens.
Bioelectron., 2006, 21, 1987; (b) C. Chou, H. Y. Hsu, H. T. Wu,
K. Y. Tseng, A. Chiou, C. J. Yu, Z. Y. Lee and T. S. Chan,
J. Biomed. Opt., 2007, 12, 024025; (c) S. F. Sui, Y. T. Sun and
L. Z. Mi, Biophys. J., 1999, 76, 333; (d) H. C. Kim, S. K. Lee,
W. B. Jeon, H. K. Lyu, S. W. Lee and S. W. Jeong, Ultramicroscopy,
2008, 108, 1379.
10 P. C. Chou, J. Rick and T. C. Chou, Anal. Chim. Acta, 2005, 542, 20.
11 B. A. Rosenzweig, N. T. Ross, D. M. Tagore, J. Jayawickramarajah,
I. Saraogi and A. D. Hamilton, J. Am. Chem. Soc., 2009, 131, 5020.
12 K. Reimhult, K. Petersson and A. Krozer, Langmuir, 2008,
24, 8695.
13 Y. Kwon, Z. Han, E. Karatan, M. Mrksich and B. K. Kay, Anal.
Chem., 2004, 76, 5713.
14 N. Tajima, M. Takai and K. Ishihara, Anal. Chem., 2011, 83, 1969.
15 S. L. Zhao, D. S. Walker and W. M. Reichert, Langmuir, 1993,
9, 3166.
16 (a) M. B. Pepys, J. Herbert, W. L. Hutchinson, G. A. Tennent,
H. J. Lachmann, J. R. Gallimore, L. B. Lovat, T. Bartfai,
A. Alanine, C. Hertel, T. Hoffmann, R. Jakob-Roetne,
R. D. Norcross, J. A. Kemp, K. Yamamura, M. Suzuki,
G. W. Taylor, S. Murray, D. Thompson, A. Purvis, S. Kolstoe,
S. P. Wood and P. N. Hawkins, Nature, 2002, 417, 254;
(b) P. I. Kitov, G. L. Mulvey, T. P. Griener, T. Lipinski,
D. Solomon, E. Paszkiewicz, J. M. Jacobson, J. M. Sadowska,
M. Suzuki, K. Yamamura, G. D. Armstrong and D. R. Bundle,
Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 16837; (c) J. Liu,
Z. Zhang, X. Tan, W. G. Hol, C. L. Verlinde and E. Fan,
J. Am. Chem. Soc., 2005, 127, 2044.
c
11902 Chem. Commun., 2011, 47, 11900–11902
This journal is The Royal Society of Chemistry 2011