J . Org. Chem. 2001, 66, 1517-1522
1517
Recent advances in carbene chemistry demonstrate
that constrictive hosts, like cyclodextrins (CyD’s)6 and
faujasite zeolites (FAU’s),7 are able to modify the selec-
tivity of the high-energy reaction intermediate.8 Thus,
we hypothesized that the confinement of 2 within the
nanoscopic cavities of CyD’s (Figure 1) and FAU’s (Figure
2) would inhibit the fragmentation reaction and foster
the 1,3 C-H insertion. Our reasoning was 2-fold: (1)
there may not be enough space within the hosts’ cavities
for the unraveling process, 2f9, and (2) distortion of the
carbene’s topology might concomitantly disfavor the
coarctate TS and allow the 1,3 C-H insertion, 2f8, to
finally occur.
The main challenge was to imbue the CyD’s and FAU’s
with a carbene precursor that is compatible with the
hosts and the standard inclusion complex (IC) prepara-
tion. The sodium salt 10 must be kept moisture-free and,
therefore, is incompatible with CyD’s and FAU’s, since
both contain adventitious water molecules. Besides,
cyclodextrin IC’s (CyD IC’s) are prepared from aqueous
solutions! Likewise, faujasite zeolite IC’s (FAU IC’s) are
prepared by loading the zeolite with a pentane solution
of the guest; salt 10 is insoluble in pentane. Therefore, a
3H-diazirine,9 3-azinortricyclane (1), was needed as a
precursor10 in lieu of the Bamford-Stevens reagent 10.
Yet, the synthesis and properties of this compound were
unreported.
Effect of Su p r a m olecu la r In clu sion on th e
Selectivity of 3-Nor tr icycla n ylid en e†
Murray G. Rosenberg‡ and Udo H. Brinker*
Institut fu¨r Organische Chemie, Universita¨t Wien,
Wa¨hringer Strasse 38, A-1090 Wien, Austria
E-mail: Udo.Brinker@univie.ac.at
Received October 31, 2000
In tr od u ction
3-Nortricycla nylidene(tricyclo[2.2.1.02,6]hepta n-3-
ylidene) (2) was originally generated via the Bamford-
Stevens reaction of the 3-nortricyclanone p-tosylhydra-
zone sodium salt (10) (Scheme 1).1 The formation of
quadricyclane (tetracyclo[2.2.1.0.2,603,5]heptane) (8) was
anticipated, from an intramolecular 1,3 C-H insertion
of the carbene, but was not observed. This is intriguing
because 2-norbornanylidene (bicyclo[2.2.1]heptan-2-
ylidene) (5), which merely lacks the C2-C6 bridge in 2,
undergoes 1,3 C-H insertion to form nortricyclane
(tricyclo[2.2.1.02,6]heptane) (3) in over 95% yield.2 Instead,
4-ethynylcyclopentene (9) was formed via cyclopropyl-
carbene fragmentation,3 a process similar to the well-
known Eschenmoser fragmentation.4 This carbene rear-
rangement is believed to proceed through a coarctate TS
that requires strict orbital alignment of the divalent
carbon with the cyclopropane ring; a bilateral symmetry
and an endocyclic configuration are requiredsboth of
which are perfectly exemplified by 2.5
Resu lts a n d Discu ssion
The preparation of diazirine 1 was successful, albeit
in only 6% yield from 3-nortricyclanone (16).11 The
R-cyclodextrin (R-CyD) and â-cyclodextrin (â-CyD) IC’s
† Carbenes in Constrained Systems. 7. For part 6, see: Krois, D.;
Bobek, M. M.; Werner, A.; Ka¨hlig, H.; Brinker, U. H. Org. Lett. 2000,
2, 315-318. Carbene Rearrangements. 55. For part 54, see: Bobek, M.
M.; Brinker, U. H. J . Am. Chem. Soc. 2000, 122, 7430-7431.
* Corresponding author. Phone: +43-1-4277-52121. Fax: +43-1-
4277-52140, U.S.A.
(5) (a) Herges, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 255-276.
(b) For a related example of coarctate fragmentation of 2-furfurylcar-
benes, see: Khasanova, T.; Sheridan, R. S. J . Am. Chem. Soc. 1998,
120, 233-234.
(6) (a) Comprehensive Supramolecular Chemistry; Lehn, J .-M., Ed.;
Pergamon: New York, 1995; Vol. 3. (b) Szejtli, J . Chem. Intell. 1999,
5 (3), 38-45. (c) Pagington, J . S. Chem. Br. 1987, 23, 455-458. (d)
Saenger, W. Angew. Chem., Int. Ed. Engl. 1980, 19, 344-362. (e) Wenz,
G. Angew. Chem., Int. Ed. Engl. 1994, 33, 803-822. (f) Maheswaran,
M. M.; Divakar, S. J . Sci. Ind. Res. 1994, 53, 924-932.
(7) (a) Rouhi, A. M. Chem. Eng. News 2000, 78 (34), 40-47. (b)
Ramamurthy, V. In Photochemistry in Organized and Constrained
Media; Ramamurthy, V., Ed.; VCH: New York, 1991; pp 432-435. (c)
Alvaro, M.; Corma, A.; Garc´ıa, H.; Miranda, M. A.; Primo, J . J . Chem.
Soc., Chem. Commun. 1993, 1041-1042.
(8) (a) Brinker, U. H.; Buchkremer, R.; Kolodziejczyk, M.; Kupfer,
R.; Rosenberg, M.; Poliks, M. D.; Orlando, M.; Gross, M. L. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1344-1345. (b) Kupfer, R.; Poliks, M.
D.; Brinker, U. H. J . Am. Chem. Soc. 1994, 116, 7393-7398. (c) Kupfer,
R.; Brinker, U. H. Liebigs Ann. 1995, 1721-1725. (d) Rosenberg, M.
G.; Kam, S. M.; Brinker, U. H. Tetrahedron Lett. 1996, 37, 3235-3238.
(e) Brinker, U. H.; Rosenberg, M. G. Adv. Carbene Chem. 1998, 2, 29-
44.
(9) (a) Chemistry of Diazirines; Liu, M. T. H., Ed.; CRC: Boca Raton,
FL, 1987; 2 vols. (b) Schmitz, E. Adv. Heterocycl. Chem. 1963, 2, 83-
130. (c) Schmitz, E. Adv. Heterocycl. Chem. 1979, 24, 63-107. (d)
Schmitz, E. Angew. Chem., Int. Ed. Engl. 1964, 3, 333-341. (e)
Schmitz, E. In Methoden der Organischen Chemie (Houben-Weyl);
Klamann, D., Ed.; Thieme: Stuttgart, 1992; Vol. E16c, pp 678-728.
(10) (a) Schmitz, E.; Habisch, D.; Stark, A. Angew. Chem., Int. Ed.
Engl. 1963, 2, 548. (b) Du¨rr, H.; Abdel-Wahab, A.-M. A. In Organic
Photochemistry and Photobiology; Horspool, W. M., Ed.; CRC: Boca
Raton, FL, 1995; pp 954-983.
(11) (a) Meinwald, J .; Crandall, J . K. J . Am. Chem. Soc. 1966, 88,
1292-1301. (b) Meinwald, J .; Crandall, J .; Hymans, W. E. Org. Synth.
Coll. 1973, 5, 866-868. (c) Hall, H. K., J r. J . Am. Chem. Soc. 1960,
82, 1209-1215. (d) Upadek, H. Ph.D. Dissertation, Ruhr-Universita¨t
Bochum, Germany, 1977; pp 156-159.
‡Department of Chemistry, State University of New York, Bing-
hamton, NY 13902-6016.
(1) (a) Cristol, S. J .; Harrington, J . K. J . Org. Chem. 1963, 28, 1413-
1415. (b) Lemal, D. M.; Fry, A. J . J . Org. Chem. 1964, 29, 1673-1676.
(c) Arct, J .; Brinker, U. H. In Methoden der Organischen Chemie
(Houben-Weyl); Regitz, M., Ed.; Thieme: Stuttgart, 1989; Vol. E19b,
pp 337-375. (d) Sydnes, L. K.; Brinker, U. H. In Methoden der
Organischen Chemie (Houben-Weyl); Regitz, M., Ed.; Thieme: Stut-
tgart, 1989; Vol. E19b, pp 542-576. (e) Shapiro, R. H. Org. React. (NY)
1976, 23, 405-507. (f) Freeman, P. K.; George, D. E.; Rao, V. N. M. J .
Org. Chem. 1963, 28, 3234-3237. (g) Kirmse, W.; Kno¨pfel, N. J . Am.
Chem. Soc. 1976, 98, 4672-4674.
(2) (a) Friedman, L.; Shechter, H. J . Am. Chem. Soc. 1961, 83, 3159-
3160. (b) Freeman, P. K.; George, D. E.; Rao, V. N. M. J . Org. Chem.
1964, 29, 1682-1684. (c) Kirmse, W.; Meinert, T.; Modarelli, D. A.;
Platz, M. S. J . Am. Chem. Soc. 1993, 115, 8918-8927.
(3) (a) Shevlin, P. B.; McKee, M. L. J . Am. Chem. Soc. 1989, 111,
519-524. (b) Moss, R. A.; Liu, W.; Krogh-J espersen, K. J . Phys. Chem.
1993, 97, 13413-13418. (c) Moss, R. A. Pure Appl. Chem. 1995, 67,
741-747. (d) Huang, H.; Platz, M. S. J . Am. Chem. Soc. 1998, 120,
5990-5999. (e) Ammann, J . R.; Subramanian, R.; Sheridan, R. S. J .
Am. Chem. Soc. 1992, 114, 7592-7594. (f) Levashova, T. V.; Semeikin,
O. V.; Balenkova, E. S. J . Org. Chem. USSR 1980, 16, 53-56. (g)
Murray, R. K., J r.; Ford, T. M. J . Org. Chem. 1977, 42, 1806-1808.
(h) Freeman, P. K.; Pugh, J . K. J . Am. Chem. Soc. 1999, 121, 2269-
2273. (i) Bergman, R. G.; Rajadhyaksha, V. J . J . Am. Chem. Soc. 1970,
92, 2163-2164. (j) Wills, M. S. B.; Danheiser, R. L. J . Am. Chem. Soc.
1998, 120, 9378-9379.
(4) (a) Advanced Organic Chemistry, 4th ed.; March, J ., Ed.; Wiley:
New York, 1992; p 1037. (b) Hassner, A.; Stumer, C. Organic Syntheses
Based on Name Reactions and Unnamed Reactions; Pergamon: Tar-
rytown, NY, 1994; p 110. (c) Mundy, B. P.; Ellerd, M. G. Name
Reactions and Reagents in Organic Synthesis; Wiley: New York, 1988;
pp 72-73.
10.1021/jo005713e CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/23/2001