JOURNAL OF THE CHINESE
CHEMICAL SOCIETY
Synthesis of 2-Amino-5-arylidenethiazol-4-ones
lent yields, short reaction times, mild conditions and easy
work-up.
= 5.1 Hz, 2H, CH2), 3.78-3.85 (m, 4H, 2CH2), 4.07 (t, J = 4.8 Hz,
2H, CH2), 7.40-7.47 (m, 4H, 4CHarom.), 7.72 (s, 1H, CH); 13
C
NMR (100 MHz, CDCl3): d 49.1, 66.3, 66.4, 128.6, 129.1, 130.0,
130.7, 132.6, 135.5, 175.0, 180.5; MS: m/z 310 (M+.+1), 308
(M+.); Anal. Calcd for C14H13ClN2O2S (308.78): C, 54.46; H,
4.24; N, 9.07; S, 10.38. Found: C, 54.22; H, 4.29; N, 9.15; S,
10.27.
EXPERIMENTAL
General: All chemicals and reagents were purchased from
Fluka and Merck and used without further purification. Magne-
sium Oxide nanoparticles (20 nm diameters, SSA: >60 M2/g)
were obtained from US Research Nanomaterials, Inc. (USA).
Melting points were measured on an Electrothermal 9100 appara-
tus. NMR spectra were recorded with a Bruker DRX-400 AVANCE
instrument (400.1 MHz for 1H, 100.6 MHz for 13C) with CDCl3
or DMSO-d6 as solvent. IR spectra were recorded on an FT-IR
Bruker vector 22 spectrometer. Mass spectra were recorded on a
Finnigan-Matt 8430 mass spectrometer operating at an ionization
potential of 70 eV. Elemental analyses were carried with a
Perkin-Elmer 2400II CHNS/O Elemental Analyzer. General
procedure for the synthesis of 2-amino-5- arylidenethiazol-4-
ones: A mixture of rhodanine (1 mmol), amine (1 mmol), alde-
hyde (1 mmol) and 12 mg (30 mol %) of MgO-NPs in 4 mL aque-
ous ethanol (50:50) were stirred in 50 °C until the reaction is com-
pleted. The completion of the reaction was indicated by the disap-
pearance of the starting material in thin layer chromatography.
After completion of the reaction, the crude product was filtered
and the residue was taken in DCM and filtered again to separate
the product as filtrate from the catalyst. The product was further
purified by recrystallization in EtOAc/DCM (equal volume). Iso-
lation of 5-arylidene thiazol-4-one intermediate: A mixture of
rhodanine (1 mmol), amine (1 mmol), aldehyde (1 mmol) and 12
mg (30 mol %) of MgO-NPs in 4 mL aqueous ethanol (50:50)
were stirred in 50 °C. After 5-10 minutes, the reaction mixture
was filtered and the residue was taken in DCM and filtered again
to separate the product as filtrate from the catalyst. Finally, the
solvent was evaporated from the product in a rotary evaporator.
Data of selected products are represented below. 5-Benzylidene-
2-(piperidin-1-yl)thiazol-4(5H)-one (4a): Yield 849 mg, 91%;
yellow powder; mp 213-215 °C; IR (KBr, cm-1) nmax: 2939, 1700,
1673, 1612, 1560; 1H NMR (400 MHz, CDCl3): d 1.69-1.81 (6H,
m, 3CH2), 3.59 (2H, br s, CH2), 4.01-4.04 (2H, m, CH2), 7.36-
ACKNOWLEDGEMENTS
This research was supported by the Research Council
of the University of Mazandaran, Iran.
REFERENCES
1. Lesyk, R. B.; Zimenkovsky, B. S.; Kaminskyy, D. V.;
Kryshchyshyn, A. P.; Ya Havryluk, D.; Atamanyuk, D. V.;
Yu, Subtel’na I.; Khyluk, D. V. Biopolym. Cell. 2011, 27,
107.
2. Lesyk, R. B.; Zimenkovsky, B. S. Curr. Org. Chem. 2004, 8,
1547.
3. Prabhakar, Y. S.; Solomon, V. R.; Gupta, M. K.; Katti, S. B.
Top. Heterocycl. Chem. 2006, 50, 161.
4. Yanan, H.; Helm, J. S.; Chen, L.; Ginsberg, C.; Gross, B.;
Kraybill, B.; Tiyanont, K.; Fang, X.; Wu, T.; Walker, S.
Chem. Biol. 2004, 11, 703.
5. Kocabalkanlia, A.; Ates, Ö.; Ötükb, G. Arch. Pharm. 2001,
334, 35.
6. Abdel-Ghani, E. J. Chem. Res. Synop. 1999, 3, 174.
7. Andreani, A.; Rambaldi, M.; Leoni, A.; Locatelli, A.; Bossa,
R.; Chiericozzi, M.; Galatulas, I.; Salvatore, G. Eur. J. Med.
Chem. 1996, 31, 383.
8. Andreani, A.; Rambaldi, M.; Locatelli, A.; Leoni, R.; Bossa,
M.; Chiericozzi, I.; Galatulas, G.; Salvatore, A. Eur. J. Med.
Chem. 1993, 28, 825.
9. Nasr, M. N. A.; Said, S. A. Arch. Pharm. 2003, 336, 551.
10. Song, Y.; Connor, D. T.; Doubleday, R.; Sorenson, R.;
Sercel; R. J.; Unangs, A. D.; Bruce, P. C.; Roth, D. J. Med.
Chem. 1999, 42, 1151.
11. Khare, R. K.; Srivastava, M. K.; Singh, H. Indian J. Chem.
Sect. B 1995, 34, 828.
12. Hendrickson, J. B.; Rees, R.; Templeton, J. F. J. Am. Chem.
Soc. 1964, 86, 107.
13. Hurst, D. T.; Atcha, S.; Marshall, K. L. Aust. J. Chem. 1991,
44, 129.
7.40 (1H, m, CHAr), 7.43-7.47 (2H, m, CHAr), 7.54 (d, 2H, 1JHH
=
7.2 Hz, CHAr), 7.81 (1H, s, CH); 13C NMR (100 MHz, CDCl3): d
24.1, 25.5, 26.2, 49.7, 50.3, 128.3, 129.0, 129.6, 129.7, 131.2,
134.4, 174.6, 181.1; MS (ESI): m/z 272 (M+.); Anal. Calcd for
C15H16N2OS (272.37): C, 66.15; H, 5.92; N, 10.29; S, 11.77.
Found: C, 66.46; H, 5.87; N, 10.50; S, 11.82. 5-(4-Chlorobenzyl-
idene)-2-morpholinothiazol-4(5H)-one (4g): Yield 90%; yel-
lowish white powder; m.p. 236-238 °C; IR (KBr) (v, cm-1): 3049,
2962, 1683, 1573, 1257; 1H NMR (400 MHz, CDCl3): d 3.62 (t, J
14. Sarodnick, G.; Heydenreich, M.; Linker, T.; Kleinpeter, E.
Tetrahedron 2003, 59, 6311.
15. Seebacher, W.; Belaj, F.; Saf, R.; Brun, R.; Weis, R.
Monatsh. Chem. 2003, 134, 1623.
16. Iwataki, I. Bull. Chem. Soc. Jpn. 1972, 45, 3218.
17. Roessler, A.; Boldt, P. Synthesis 1998, 1998, 980.
18. Taylor, E. C.; Wolinsky, J.; Lee, H. H. J. Am. Chem. Soc.
1954, 76, 1870.
19. Pulici, M.; Quartieri, F. Tetrahedron Lett. 2005, 46, 2387.
J. Chin. Chem. Soc. 2014, 61, 337-340
© 2014 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
339