M. A. Brown, M. A. Kerr / Tetrahedron Letters 42 (2001) 983–985
985
ing, I. Eds.; Pergamon Press: Oxford, 1991; Vol. 3, pp.
436–478; (c) Comprehensive Organometallic Chemistry,
2nd Ed.; Abel, E. W.; Stone, G. A.; Wilkinson, G., Eds.;
Pergamon Press: Oxford, Bol 12, Ch 3, Sect. D; (d) Stille,
J. K. Angew. Chem., Int. Ed. Engl. 1985, 25, 508–524; (e)
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
4. (a) Moore, R. E.; Cheuk, C.; Patterson, G. M. L. J. Am.
Chem. Soc. 1984, 106, 6456–6457; (b) Moore, R. E.;
Cheuk, C.; Yang, X.-Q. G.; Patterson, G. M. L. J. Org.
Chem. 1987, 52, 1036–1043; (c) Smitka, T. A.; Bonjouk-
lian, R.; Doolin, L.; Jones, N. D.; Deeter, J. B.; Yoshida,
W. Y.; Prinsep, M. R.; Moore, R. E.; Patterson, G. M. L.
J. Org. Chem. 1992, 57, 857–861.
5. (a) Hurt, C. R.; Lin, R.; Rappoport, H. J. Org. Chem.
1999, 64, 225–233; (b) Tani, M.; Ikegami, H.; Tashiro,
M.; Hiura, T.; Tsukioka, H.; et al. Heterocycles 1992,
2349–2362; (c) Martin, P. Helv. Chim. Acta 1988, 71,
344–347; (d) Kruse, L. I; Meyer, M. D. J. Org. Chem.
1984, 49, 4761–4768.
To demonstrate the feasibility of our cross-coupling/
Diels–Alder approach to the synthesis of the tetracyclic
hapalindoles, we prepared a simple model system
(Scheme 2). Using dihaloindole 6a, the allyl
(dienophilic) moiety was installed using a Stille cou-
pling to produce 7 in 76% yield. A subsequent Heck
reaction employing methyl vinyl ketone gave enone 8 in
81% yield. Methylenation in 55% yield produced the
Diels–Alder substrate 9 which when heated at 100°C
for 12 h in toluene and produced an inseparable mix-
ture of cis and trans adducts 10 and 11 in a combined
yield of 15%.10
In summary we have developed a convenient method
for the direct mercuration and subsequent iodination of
3-substitued indoles having an N-tosyl protecting
group. The method appears to be very general and
promises to be extremely useful for the preparation of
synthetic precursors to a wide range of indole alkaloids
and other non-natural indole containing molecules. It is
our intention to utilize this method in combination with
cross-coupling methodology in our efforts to prepare
hapalindoles and other indole alkaloids. Details of the
cross-coupling/Diels–Alder methodology presented in
Scheme 2 will be reported in due course.
6. Somei, M.; Yamkada, F.; Kunimoto, M.; Kaneko, C.
Heterocycles 1984, 22, 7801–7970.
7. (a) Semmelhack, M. F.; Wulff, W.; Garcia, J. L. J.
Organomet. Chem. 1982, 260, C5; (b) Semmelhack, M. F.;
Rhee, H. Tetrahedron 1993, 49, 1395–1398.
8. Harrington, P. J.; Hegedus, L. S. J. Org. Chem. 1984, 49,
2658–2662.
9. Physical data for 5a: 1H NMR (CDCl3) d=7.97 (d,
J=7.1 Hz, 1H), 7.71 (d=8.9 Hz, 2H), 7.41–7.22 (m, 5H),
2.37 (s, 3H). 13C NMR (CDCl3) l=146.1, 136.9, 134.9,
130.5, 129.9, 127.0, 126.8, 126.4, 120.4, 114.0, 99.3, 21.9.
IR (thin film) w=3110–3020, 1595, 1372, 1173. HRMS
(70 ev) for C15H11O2SNHgBr (M+−Cl) calcd:584.5088,
Acknowledgements
We thank MedMira Laboratories and the Natural Sci-
ences and Engineering Research Council (NSERC) of
Canada for generous financial support of this research.
1
found: 584.5098. Physical data for 6a: H NMR (CDCl3)
l=8.35 (d, J=7.9 Hz, 1H), 7.75 (d, J=8.4 Hz, 2 H), 7.43
(d, J=9.0 Hz, 1 H), 7.35–7.22 (m, 2H), 7.20 (d, J=8.3
Hz, 2H), 2.39 (s, 3H). 13C NMR (CDCl3) l=146.3,
138.2, 134.1, 133.8, 130.0, 127.8, 126.1, 125.1, 124.2,
116.2, 91.0, 89.1, 21.9. IR (thin film): w=3115–3050,
1594, 1370, 1175. HRMS (70 ev) for C15H11O2SNBrI
(M+) calcd: 474.8733, found: 474.8739.
References
1. Caine, D. In Comprehensive Organic Sythesis; Trost, B.
M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 3, pp. 34–35.
2. Snieckus, V. A. Chem. Rev. 1990, 90, 879–932.
3. (a) Heck, R. Palladium Reagents in Organic Synthesis;
Academic Press: London, 1985; Chapter 6; (b) Tamao, K.
In Comprehensive Organic Synthesis; Trost, B. M.; Flem-
10. Work is in progress to improve this unacceptably low
yield using Lewis acids both alone and in concert with
high pressures (ꢀ13 kbar).
.